• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 94
  • 14
  • 11
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 296
  • 296
  • 296
  • 139
  • 137
  • 109
  • 104
  • 45
  • 43
  • 39
  • 37
  • 36
  • 36
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Numerical methods for dynamic micromagnetics

Shepherd, David January 2015 (has links)
Micromagnetics is a continuum mechanics theory of magnetic materials widely used in industry and academia. In this thesis we describe a complete numerical method, with a number of novel components, for the computational solution of dynamic micromagnetic problems by solving the Landau-Lifshitz-Gilbert (LLG) equation. In particular we focus on the use of the implicit midpoint rule (IMR), a time integration scheme which conserves several important properties of the LLG equation. We use the finite element method for spatial discretisation, and use nodal quadrature schemes to retain the conservation properties of IMR despite the weak-form approach. We introduce a novel, generally-applicable adaptive time step selection algorithm for the IMR. The resulting scheme selects error-appropriate time steps for a variety of problems, including the semi-discretised LLG equation. We also show that it retains the conservation properties of the fixed step IMR for the LLG equation. We demonstrate how hybrid FEM/BEM magnetostatic calculations can be coupled to the LLG equation in a monolithic manner. This allows the coupled solver to maintain all properties of the standard time integration scheme, in particular stability properties and the energy conservation property of IMR. We also develop a preconditioned Krylov solver for the coupled system which can efficiently solve the monolithic system provided that an effective preconditioner for the LLG sub-problem is available. Finally we investigate the effect of the spatial discretisation on the comparative effectiveness of implicit and explicit time integration schemes (i.e. the stiffness). We find that explicit methods are more efficient for simple problems, but for the fine spatial discretisations required in a number of more complex cases implicit schemes become orders of magnitude more efficient.
282

Modelování šíření elektromagnetického pole v tunelech / Modeling of electromagnetic field propation in tunnels

Géze, Daniel January 2014 (has links)
Cieľom predloženej diplomovej práce je numerické riešenie šírenia elektromagnetických vĺn v tuneli. Za týmto účelom bola sformulovaná integrálna rovnica a numericky riešená pomocou metódy hraničných prvkov (BEM). Implementácia v prostredí MATLAB sľubne poukazuje na nízke výpočtové nároky oproti štandardným diferenciálnych diskretizačným metódam. Súčasťou projektu je vykreslenie rozloženia elektromagnetického poľa pre rôzne profily tunelov. Overenie výsledkov je vykonané pomocou zjednodušeného analytického modelu. V rámci práce je pozorované štúdium vplyvov zmien profilu tunela a rôznych impedančných podmienok na stenách tunela na výsledné rozloženie elektromagnetického poľa vo vnútri tunela.
283

Výpočtové modelování hluku v kabině letounu VUT 100 Cobra / Computational modelling of noise inside cabin of aircraft VUT 100 Cobra

Prnka, Jiří January 2010 (has links)
This master’s thesis deals with the computational simulation of low-frequency noise inside the cabin of small commercial airplane VUT 100 Cobra. For this low-frequncy range deterministic methods: Final Element Method (FEM) and Boundary Element Method (BEM) are used for simulation of the dynamic behaviour of the object. FEM has been used to compute eigenmodes and eigenfrequences of the structure of the aeroplane cabin and of the acoustic space inside cabin. Then response to harmonic excitation of engine represented by unit forces in place of contact has been computed. Obtained velocities on the surface of the cabin are then used as the basis for the noise calculation inside the cabin using BEM. After that effect of some construction modifications on sound level inside cabin are evaluated by computational modelling.
284

A parallel version of the preconditioned conjugate gradient method for boundary element equations

Pester, M., Rjasanow, S. 30 October 1998 (has links)
The parallel version of precondition techniques is developed for matrices arising from the Galerkin boundary element method for two-dimensional domains with Dirichlet boundary conditions. Results were obtained for implementations on a transputer network as well as on an nCUBE-2 parallel computer showing that iterative solution methods are very well suited for a MIMD computer. A comparison of numerical results for iterative and direct solution methods is presented and underlines the superiority of iterative methods for large systems.
285

Consistent description of radiation damping in transient soil-structure interaction

Zulkifli, Ediansjah 16 July 2008 (has links)
Dynamic soil-structure interaction problems are characterized by an unbounded soil-domain and thus by radiation damping. This radiation damping arises due to wave propagation from the excited structure into the subsoil and may lead to a reduction of the structural response. A consistent description of this radiation damping has been carried out by means of different concepts. A widely used approach truncates the unbounded medium by a special kind of absorbing boundaries which are free of artificial reflection. The resulting finite domain can be treated as usually by finite elements. In this report, an alternative method to represent an unbounded medium in a dynamic analysis is presented. In principle, it is a conjunction of the boundary element method (BEM) in the frequency domain to reproduce the far-field and the finite element method (FEM) in the time domain to analyze the near-field. This alternative procedure avoids the introduction of any artificial boundaries. The procedure is based on a rational approximation of the dynamic stiffness of the unbounded domain in the frequency-domain. In this report, the dynamic stiffness of the unbounded domain is obtained from the BEM. The matrix-valued coefficients of the rational approximation function are determined by means of a least-square procedure. The time-domain representation is achieved by splitting the rational force-displacement relation into a series of linear functions in the frequency-domain corresponding with first order differential equations in the time-domain. This splitting process has been demonstrated as numerically effective and in addition, no Fourier transformation is necessary. In this thesis, dynamic soil-structure interaction problems with a relatively large number of degrees of freedom have been examined. These degrees of freedom arise from the discretization of the coupling interface, internal variables from the splitting procedure and from modeling the structure. The new method is especially suitable for systems with transient excitations as arising from rotating machines at startup and shutdown. The theoretical part of the thesis contains elements of system theory and discusses particularly stability problems arising from the rational approximation. The practical part presents a large amount of convergence studies and numerical results for layered soil and finally represents the propagation damping as a kind of damping ratio which is typically used in elementary structural dynamics. / In der Dynamik der Boden-Bauwerk-Interaktion wird der Boden in vielen Fällen durch ein unbegrenztes elastisches Medium beschrieben, wodurch das Phänomen der Abstrahldämpfung begründet wird. Diese Dämpfung entsteht durch Energietransfer von der erregten Struktur in den Boden durch Wellenausbreitung und reduziert somit die Strukturschwingungen. Um das infinite Bodengebiet dennoch durch finite Elemente beschreiben zu können, werden üblicherweise als Hilfsmaßnahme künstliche sogenannte absorbierende Ränder eingeführt. In dieser Arbeit wird eine alternative Methode zur Darstellung des unbegrenzten Mediums in der Dynamik vorgelegt. Im Prinzip handelt es sich um eine Kopplung der Rand-Element-Methode (REM) für den unendlichen Boden (das sogenannte Fernfeld) im Frequenzbereich und der Finite-Element-Methode (FEM) für das Nahfeld im Zeitbereich. Dieses alternative Verfahren vermeidet die Einführung künstlicher Ränder. Das Verfahren basiert auf einer rationalen Beschreibung der dynamischen Steifigkeit des Fernfeldes im Frequenzbereich. Diese Steifigkeit wird in der vorliegenden Arbeit durch die Rand-Element-Methode erzeugt. Die Matrix-wertigen Koeffizienten der rationalen Frequenzfunktion werden durch Minimierung des Fehlerquadrates berechnet. Die Transformation dieser Frequenzdarstellung in den Zeitbereich gelingt durch algebraische Überführung der rationalen Funktion in ein in der Frequenz lineares Hypersystem mit einer zugeordneten Zustandsgleichung erste Ordnung im Zeitbereich. Dieser Prozess hat sich als numerisch effektiv erwiesen und erfordert darüberhinaus keine Fourier-Transformation. Das entwickelte Vorgehen wird in dieser Arbeit an Problemen der dynamischen Boden-Bauwerk-Interaktion mit einer großen Anzahl von Freiheitsgraden erprobt. Diese Freiheitsgrade folgen aus der Diskretisierung in der Koppelfuge zwischen Boden und Struktur, der Diskretisierung der Struktur selbst und aus der Überführung in das Hypersystem mittels interner Variablen. Das neue Verfahren eignet sich insbesondere für Systeme mit transienter Erregung, wie sie beim An- und Auslaufen von Rotationsmaschinen ensteht. Der theoretische Teil der Arbeit wird geprägt durch Elemente der Systemtheorie und setzt sich zudem mit typischen Stabilitätsproblemen auseinander, die aus der rationalen Beschreibung entstehen. Der praktische Teil präsentiert Konvergenzstudien und numerische Ergebnisse für Boden-Bauwerk- Interaktionsprobleme mit geschichtetem Boden bei transienter Erregung mit Resonanzdurchlauf. Zudem gelingt eine Darstellung der Abstrahldämpfung in Form des Dämpfungsgrades D, wie er in der klassischen Strukturdynamik verwendet wird.
286

H-matrix based Solver for 3D Elastodynamics Boundary Integral Equations / Solveurs fondés sur la méthode des H-matrices pour les équations intégrales en élastodynamique 3D

Desiderio, Luca 27 January 2017 (has links)
Cette thèse porte sur l'étude théorique et numérique des méthodes rapides pour résoudre les équations de l'élastodynamique 3D en domaine fréquentiel, et se place dans le cadre d'une collaboration avec la société Shell en vue d'optimiser la convergence des problèmes d'inversion sismique. La méthode repose sur l'utilisation des éléments finis de frontière (BEM) pour la discrétisation et sur les techniques de matrices hiérarchiques (H-matrices) pour l'accélération de la résolution du système linéaire. Dans le cadre de cette thèse on a développé un solveur direct pour les BEMs en utilisant une factorisation LU et un stockage hiérarchique. Si le concept des H-matrices est simple à comprendre, sa mise en oeuvre requiert des développements algorithmiques importants tels que la gestion de la multiplication de matrices représentées par des structures différentes (compressées ou non) qui ne comprend pas mois de 27 sous-cas. Un autre point délicat est l'utilisation des méthodes d'approximations par matrices compressées (de rang faible) dans le cadre des problèmes vectoriels. Une étude algorithmique a donc été faite pour mettre en oeuvre la méthode des H-matrices. Nous avons par ailleurs estimé théoriquement le rang faible attendu pour les noyaux oscillants, ce qui constitue une nouveauté, et montré que la méthode est utilisable en élastodynamique. En outre on a étudié l'influence des divers paramètres de la méthode en acoustique et en élastodynamique 3D, à fin de calibrer leur valeurs numériques optimales. Dans le cadre de la collaboration avec Shell, un cas test spécifique a été étudié. Il s'agit d'un problème de propagation d'une onde sismique dans un demi-espace élastique soumis à une force ponctuelle en surface. Enfin le solveur direct développé a été intégré au code COFFEE développé a POEMS (environ 25000 lignes en Fortran 90) / This thesis focuses on the theoretical and numerical study of fast methods to solve the equations of 3D elastodynamics in frequency-domain. We use the Boundary Element Method (BEM) as discretization technique, in association with the hierarchical matrices (H-matrices) technique for the fast solution of the resulting linear system. The BEM is based on a boundary integral formulation which requires the discretization of the only domain boundaries. Thus, this method is well suited to treat seismic wave propagation problems. A major drawback of classical BEM is that it results in dense matrices, which leads to high memory requirement (O (N 2 ), if N is the number of degrees of freedom) and computational costs.Therefore, the simulation of realistic problems is limited by the number of degrees of freedom. Several fast BEMs have been developed to improve the computational efficiency. We propose a fast H-matrix based direct BEM solver.
287

[pt] ESQUEMA GERAL DE PROPAGAÇÃO BIDIMENSIONAL DE TRINCAS USANDO O MÉTODO CONSISTENTE DOS ELEMENTOS DE CONTORNO / [en] GENERAL TWO-DIMENSIONAL CRACK PROPAGATION SCHEME USING THE CONSISTENT BOUNDARY ELEMENT METHOD

GUILHERME OLIVEIRA RABELO 03 June 2022 (has links)
[pt] Apresenta-se neste trabalho um procedimento de análise de propagação de trincas a partir de um programa de computador baseado na formulação do método consistente dos elementos de contorno para problemas bidimensionais. Este método tem como uma das suas principais características a solução exata dos problemas de singularidade presentes na formulação. Além disso, com esta metodologia é possível representar a geometria da trinca com aberturas micrométricas, de forma semelhante ao observado em ensaios laboratoriais. Neste estudo, são analisados os resultados de propagação em três estruturas com geometrias distintas, cada estrutura submetida a diferentes combinações de carga, com o objetivo de reproduzir modos puros de carregamento I e II, assim como modo misto de carregamento. É realizado um estudo sobre o tamanho dos incrementos utilizados nos modelos e do ângulo de propagação, possibilitando determinar que o tamanho ideal dos elementos de novos trechos deve se limitar à mesma dimensão dos elementos vizinhos, evitando possíveis erros numéricos, enquanto o ângulo de propagação pode ser determinado utilizando os fatores de intensidade de tensão (FIT) KI e KII, empregando o conceito de tensão principal máxima. O FIT é obtido por meio de deslocamentos recíprocos próximos à ponta da trinca, sendo realizado um estudo com um exemplo de referência para medir a confiabilidade da técnica, com diferenças de no máximo 7 por cento. O desempenho observado utilizando a metodologia adotada neste estudo é comparado com outros resultados encontrados na literatura, mostrando caminhos de propagação de trinca semelhantes em todas as simulações. No decorrer do trabalho são explicados os conceitos de mecânica da fratura linearmente elástica e da geometria da trinca adotada, assim como o desenvolvimento do código computacional. / [en] This work presents a crack propagation analysis procedure on a computer program based on the consistent boundary element formulation for two-dimensional problems. This method has as one of its main features the exact solution of the singularity problems present in the formulation. In addition, with this methodology it is possible to represent the crack geometry with micrometric openings, similar to the cracks presented in laboratory tests. In this study, the propagation results in three structures with different geometries are analyzed, each structure subjected to different load combinations, in order to reproduce pure loading modes I and II, as well as mixed loading modes. A study is carried out on the size of the increments used in the models and on the propagation angle, making it possible to determine that the ideal size of the elements of new sections should be limited to the same dimension of the neighboring elements, avoiding possible numerical errors, while the propagation angle can be determined using the stress intensity factors (FIT) KI e KII, employing the concept of maximum principal stress. The FIT is obtained through reciprocal displacements close to the crack tip, and a study is carried out with a reference example to measure the reliability of the technique, with differences of at most 7 per cent. The performance observed using the methodology adopted in this study is compared with other results found in literature, showing similar crack propagation paths in all simulations. In the course of the chapters, the concepts of linearly elastic fracture mechanics and the adopted crack geometry are explained, as well as the development of the computational code.
288

Fast, Parallel Techniques for Time-Domain Boundary Integral Equations

Kachanovska, Maryna 27 January 2014 (has links) (PDF)
This work addresses the question of the efficient numerical solution of time-domain boundary integral equations with retarded potentials arising in the problems of acoustic and electromagnetic scattering. The convolutional form of the time-domain boundary operators allows to discretize them with the help of Runge-Kutta convolution quadrature. This method combines Laplace-transform and time-stepping approaches and requires the explicit form of the fundamental solution only in the Laplace domain to be known. Recent numerical and analytical studies revealed excellent properties of Runge-Kutta convolution quadrature, e.g. high convergence order, stability, low dissipation and dispersion. As a model problem, we consider the wave scattering in three dimensions. The convolution quadrature discretization of the indirect formulation for the three-dimensional wave equation leads to the lower triangular Toeplitz system of equations. Each entry of this system is a boundary integral operator with a kernel defined by convolution quadrature. In this work we develop an efficient method of almost linear complexity for the solution of this system based on the existing recursive algorithm. The latter requires the construction of many discretizations of the Helmholtz boundary single layer operator for a wide range of complex wavenumbers. This leads to two main problems: the need to construct many dense matrices and to evaluate many singular and near-singular integrals. The first problem is overcome by the use of data-sparse techniques, namely, the high-frequency fast multipole method (HF FMM) and H-matrices. The applicability of both techniques for the discretization of the Helmholtz boundary single-layer operators with complex wavenumbers is analyzed. It is shown that the presence of decay can favorably affect the length of the fast multipole expansions and thus reduce the matrix-vector multiplication times. The performance of H-matrices and the HF FMM is compared for a range of complex wavenumbers, and the strategy to choose between two techniques is suggested. The second problem, namely, the assembly of many singular and nearly-singular integrals, is solved by the use of the Huygens principle. In this work we prove that kernels of the boundary integral operators $w_n^h(d)$ ($h$ is the time step and $t_n=nh$ is the time) exhibit exponential decay outside of the neighborhood of $d=nh$ (this is the consequence of the Huygens principle). The size of the support of these kernels for fixed $h$ increases with $n$ as $n^a,a<1$, where $a$ depends on the order of the Runge-Kutta method and is (typically) smaller for Runge-Kutta methods of higher order. Numerical experiments demonstrate that theoretically predicted values of $a$ are quite close to optimal. In the work it is shown how this property can be used in the recursive algorithm to construct only a few matrices with the near-field, while for the rest of the matrices the far-field only is assembled. The resulting method allows to solve the three-dimensional wave scattering problem with asymptotically almost linear complexity. The efficiency of the approach is confirmed by extensive numerical experiments.
289

Conventional and Reciprocal Approaches to the Forward and Inverse Problems of Electroencephalography

Finke, Stefan 03 1900 (has links)
Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque. L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses. Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne. On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées. Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent. Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM. / The inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach. The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions. In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities. We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed. While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise. Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed. Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed.
290

A study on the acoustic performance of tramway low-height noise barriers : gradient-based numerical optimization and experimental approaches / Étude de la performance acoustique des écrans antibruit de faible hauteur pour le tramway : optimisation numérique par méthode de gradient et approches expérimentales

Jolibois, Alexandre 25 November 2013 (has links)
Le bruit est devenu une nuisance importante en zone urbaine au point que selon l'Organisation Mondiale de la Santé, 40% de la population européenne est exposée à des niveaux de bruit excessifs, principalement dû aux transports terrestres. Il devient donc nécessaire de trouver de nouveaux moyens de lutter contre le bruit en zone urbaine. Dans ce travail, on étudie une solution possible à ce problème: un écran bas antibruit. Il s'agit d'un écran de hauteur inférieure à un mètre placé près d'une source, conçu pour réduire le niveau de bruit pour les piétons et les cyclistes à proximité. Ce type de protection est étudié numériquement et expérimentalement. Nous nous intéressons particulièrement aux écrans adaptés au bruit du tramway puisque dans ce cas les sources sont proches du sol et peuvent être atténuées efficacement. La forme ainsi que le traitement de surface de l'écran sont optimisés par une méthode de gradient couplée à une méthode 2D d'éléments finis de frontière. Les variables à optimiser sont les coordonnées de nœuds de contrôle et les paramètres servant à décrire l'impédance de surface. Les sensibilités sont calculées efficacement par la méthode de l'état adjoint. Les formes générées par l'algorithme d'optimisation sont assez irrégulières mais induisent une nette amélioration par rapport à des formes simples, d'au moins 5 dB (A). Il est également montré que l'utilisation de traitement absorbant du côté source de l'écran peut améliorer la performance sensiblement. Ce dernier point est confirmé par des mesures effectuées sur modèle réduit. De plus, un prototype à l'échelle 1 d'écran bas antibruit a été construit et testé en conditions réelles, le long d'une voie de tramway à Grenoble. Les mesures montrent que la protection réduit le niveau de 10 dB (A) pour un récepteur proche situé à hauteur d'oreilles. Ces résultats semblent confirmer l'applicabilité de ces protections pour réduire efficacement le bruit en zone urbaine / Noise has become a main nuisance in urban areas to the point that according to the World Health Organization 40% of the European population is exposed to excessive noise levels, mainly due to ground transportation. There is therefore a need to find new ways to mitigate noise in urban areas. In this work, a possible device to achieve this goal is studied: a low-height noise barrier. It consists of a barrier typically less than one meter high placed close to a source, designed to decrease the noise level for nearby pedestrians and cyclists. This type of device is studied both numerically and experimentally. Tramway noise barriers are especially studied since the noise sources are in this case very close to the ground and can therefore be attenuated efficiently. The shape and the surface treatment of the barrier are optimized using a gradient-based method coupled to a 2D boundary element method (BEM). The optimization variables are the node coordinates of a control mesh and the parameters describing the surface impedance. Sensitivities are calculated efficiently using the adjoint state approach. Numerical results show that the shapes generated by the optimization algorithm tend to be quite irregular but provide a significant improvement of more than 5 dB (A) compared to simpler shapes. Utilizing an absorbing treatment on the source side of the barrier is shown to be efficient as well. This second point has been confirmed by scale model measurements. In addition, a full scale low height noise barrier prototype has been built and tested in situ close to a tramway track in Grenoble. Measurements show that the device provides more than 10 dB (A) of attenuation for a close receiver located at the typical height of human ears. These results therefore seem to confirm the applicability of such protections to efficiently decrease noise exposure in urban areas

Page generated in 0.0879 seconds