Spelling suggestions: "subject:"braconidae."" "subject:"bryconidae.""
51 |
Caracterização química e genética da interação Capsicum spp. (Solanacea), pulgão Aphis gossypii Glover (Hemiptera: Aphididae) e o parasitóide Aphidius colemani Viereck (Hymenoptera, Braconidae, Aphidiinae) / Chemical and genetic characterization of the interaction Capsicum ssp. (Solanacea), Aphid Aphis gossypii Glover (Hemiptera: Aphididae) and the paraitoid Aphidius colemani Viereck (Hymenoptera, Braconidae, Aphidiinae)Costa, João Gomes da 23 August 2010 (has links)
Pest control of cultivated plant species has been usually performed by insecticides, which is undesirable because of economical and environmental concerns, since successive applications affect natural enemies and increase the possibility of development of resistant population toward insecticides. These problems can be minimized with alternative control methods as the use of resistant varieties, use of substances that induce resistance and biological control. Those studies involving the interaction of plant, pest and natural enemies are of fundamental importance. Thus, this study aimed: a) to study the effect of volatile organic compounds in tritrophic interactions between pepper Capsicum spp., the aphid Aphis gossypii and its parasitoid Aphidius colemani; b) to study the role of cis-jasmone in the tritrophic interaction between the pepper, the aphid A. gossypii and the parasitoid A. colemani and its role in activating the defense mechanism of the plant. Pepper varieties were evaluated for resistance to the aphid A. gossypii and their volatiles were collected before and after infestation. Volatiles compounds were tentatively identified by gas chromatography/mass spectrometry. Olfactometry bioassays were performed with volatile regarding the behavior of A. gossypii and A. colemani. The main conclusions obtained in this work were: a) there is genetic variability among genotypes of Capsicumin relation to the release of volatile compounds and in the susceptibility toward A. gossypii; b) genotype Cambuci can be used in breeding programs aiming Capsicum cultivars more resistant to A. gossypii; c) there were significant differences between the effects of volatiles from the two cultivars on behavior of A. gossypii and A. colemani; d) the volatiles emitted by Cambuci cultivar after infestation produced repellent effect on A. gossypii and were attractive to A. colemani; e) the cis-jasmone applied to pepper plants provided emission of volatiles that had repellent action on the A. gossypii and attractive one to A. colemani; f) the genetic variability between genotypes, after infestation indicates that volatile organic compounds present as variables can be used for selection and development of bell pepper cultivars resistant to the aphid A. gossypii. / O controle de pragas das espécies vegetais cultivadas tem sido normalmente realizado por meio de inseticidas, o que é indesejável tanto por motivos econômicos quanto ambientais, já que as aplicações sucessivas afetam os inimigos naturais e aumentam a possibilidade de desenvolvimento de populações da praga resistentes aos inseticidas. Esses problemas podem ser minimizados com métodos alternativos de controle como o emprego de variedades resistentes, o uso de substâncias indutoras e o controle biológico. Para isso, estudos envolvendo a interação planta, praga e inimigo natural são de fundamental importância. Dessa forma, este trabalho teve como objetivos: a) Estudar a ação dos compostos orgânicos voláteis na interação tritrófica entre o pimentão Capsicum spp., o pulgão Aphis gossypiie seu parasitóide Aphidiuscolemani; b) Estudar a ação da cis-jasmona na interação tritrófica entre o pimentão, o pulgão A. gossypii e o parasitóide A. colemani e seu papel na ativação do mecanismo de defesa do vegetal. Variedades de pimentão foram avaliadas em relação à resistência ao pulgão A. gossypii e os seus compostos voláteis foram coletados antes e após a infestação. Os compostos voláteis foram tentativamente identificados por cromatografia gasosa/espectrometria de massas. Bioensaios de olfatometria foram realizados com os compostos voláteis em relação ao comportamento de A. gossypii e A. colemani. As principais conclusões obtidas neste trabalho foram: a) Existe variabilidade genética entre os genótipos de Capsicum em relação à emissão de compostos voláteis e em relação à susceptibilidade ao A. gossypii; b) O genótipo Cambuci poderá ser utilizado em programas de melhoramento genético visando cultivares de Capsicum mais resistentes ao A. gossypii; c) Houve diferenças significativas entre os efeitos dos compostos voláteis das duas cultivares sobre os comportamentos de A. gossypii e de A. colemani; d) Os compostos voláteis emitidos pela cultivar Cambuci após a infestação proporcionaram efeito repelente a A. gossypii e atrativo a A. colemani; f) A cis-jasmona aplicada sobre plantas de pimentão induziu a emissão e/ou produção de compostos voláteis que teve ação de repelência a A. gossypii e ação atraente para A. colemani; i) A variabilidade genética entre os genótipos, após a infestação, indica que os compostos orgânicos voláteis apresentam-se como variáveis que podem ser utilizadas para seleção e desenvolvimento de cultivares de pimentão resistente ao pulgão A. gossypii.
|
52 |
The effect of floral resources on the leafroller (Lepidoptera: Tortricidae) parasitoid Dolichogenidea tasmanica (Cameron)(Hymenoptera: Braconidae) in selected New Zealand vineyardsBerndt, Lisa A. January 2002 (has links)
In this study, buckwheat (Fagopyrum esculentum Moench) and alyssum (Lobularia maritima (L.)) flowers were used to examine the effect of floral resources on the efficacy of the leafroller parasitoid Dolichogenidea tasmanica (Cameron) in vineyards. This was done by assessing the influence of these flowers on parasitoid abundance and parasitism rate, and by investigating the consequences of this for leafroller abundance. In laboratory experiments, alyssum flowers were used to investigate the effect of floral food on the longevity, fecundity and sex ratio of D. tasmanica. Dolichogenidea tasmanica comprised more than 95 % of parasitoids reared from field collected leafrollers in this study. The abundance of D. tasmanica during the 1999-2000 growing season was very low compared with previous studies, possibly due to the very low abundance of its leafroller hosts during the experiment. The number of males of this species on yellow sticky traps was increased (although not significantly) when buckwheat flowers were planted in a Marlborough vineyard; however, the number of female D. tasmanica on traps was no greater with flowers than without. The abundance of another leafroller parasitoid, Glyptapanteles demeter (Wilkinson)(Hymenoptera: Braconidae), on traps was also not significantly affected by the presence of buckwheat flowers, although females of this species were caught in greater numbers in the control than in buckwheat plots. Naturally-occurring leafrollers were collected from three vineyard sites in Marlborough, and one in Canterbury during the 2000-2001 season to assess the effect of buckwheat and alyssum flowers on parasitism rate. Parasitism rate more than doubled in the presence of buckwheat at one of the Marlborough vineyards, but alyssum had no effect on parasitism rate in Canterbury. A leafroller release/recover method, used when naturally-occurring leafrollers were too scarce to collect, was unable to detect any effect of buckwheat or alyssum on parasitism rate. Mean parasitism rates of approximately 20 % were common in Marlborough, although rates ranged from 0 % to 45 % across the three vineyard sites in that region. In Canterbury in April, mean parasitism rates were approximately 40 % (Chapter 4). Rates were higher on upper canopy leaves (40-60 %) compared with lower canopy leaves and bunches (0-25 %). Leafroller abundance was apparently not affected by the presence of buckwheat in Marlborough, or alyssum in Canterbury. Buckwheat did, however, significantly reduce the amount of leafroller evidence (webbed leafroller feeding sites on leaves or in bunches) in Marlborough, suggesting that the presence of these flowers may reduce leafroller populations. Leafrollers infested less than 0.1 % of Cabernet Sauvignon leaves throughout the 1999-2000 growing season, but increased in abundance in bunches to infest a maximum of 0.5 % of bunches in late March in Marlborough. In Pinot Noir vines in the 2000-2001 season, leafroller abundance was also low, although sampling was not conducted late in the season when abundance reaches a peak. In Riesling vines in Canterbury, between 1.5 % and 2.5 % of bunches were infested with leafrollers in April. In the laboratory, alyssum flowers significantly increased the longevity and lifetime fecundity of D. tasmanica compared with a no-flower treatment. However, daily fecundity was not increased by the availability of food, suggesting that the greater lifetime fecundity was related to increases in longevity. Parasitoids were also able to obtain nutrients from whitefly honeydew, which resulted in similar longevity and daily fecundity to those when alyssum flowers were present. The availability of food had a significant effect on the offspring sex ratio of D. tasmanica. Parasitoids reared from naturally-occurring leafrollers produced an equal sex ratio, assumed to be the evolutionarily stable strategy (ESS) for this species. In the laboratory, this ESS was observed only when parasitoids had access to alyssum flowers. Without food, or with honeydew only, sex ratios were strongly male-biased. In the field, floral resources affected the sex ratio of D. tasmanica only when this species was reared from leafrollers released and recovered in Marlborough. In that experiment, buckwheat shifted the sex ratio in favour of female production from the equal sex ratio found in control plots. No firm explanations can be given to account for these results, due to a lack of research in this area. Possible mechanisms for the changes in sex ratio with flowers are discussed. This study demonstrated that flowers are an important source of nutrients for D. tasmanica, influencing the longevity, fecundity and offspring sex ratio of this species. However, only some of the field experiments were able to show any positive effect of the provision of floral resources on parasitoid abundance or parasitism rate. More information is needed on the role these parasitoids, and other natural enemies, play in regulating leafroller populations in New Zealand vineyards, and on how they use floral resources in the field, before recommendations can be made regarding the adoption of this technology by growers.
|
Page generated in 0.0442 seconds