• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 19
  • 9
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 130
  • 130
  • 33
  • 27
  • 18
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Dynamic graphical models and curve registration for high-dimensional time course data

McDonnell, Erin I. January 2021 (has links)
The theme of this dissertation is to improve the exploration of patient subgroups with a precision medicine lens, specifically using repeated measures data to evaluate longitudinal trajectories of clinical, biological, and lifestyle measures. Our proposed methodological contributions fall into two branches of statistical methodology: undirected graphical models and functional data analysis. In the first part of this dissertation, our goal was to study longitudinal networks of brain imaging biomarkers and clinical symptoms during the time leading up to manifest Huntington's disease diagnosis among patients with known genetic risk of disease. Understanding the interrelationships between measures may improve our ability to identify patients who are nearing disease onset and who therefore might be ideal patients for clinical trial recruitment. Gaussian graphical models are a powerful approach for network modeling, and several extensions to these models have been developed to estimate time-varying networks. We propose a time-varying Gaussian graphical model specifically for a time scale that is centered on an anchoring event such as disease diagnosis. Our method contains several novel components intended to 1) reduce bias known to stem from 𝑙₁ penalization, and 2) improve temporal smoothness in network edge strength and structure. These novel components include time-varying adaptive lasso weights, as well as a combination of 𝑙₁, 𝑙₂, and 𝑙₀ penalization. We demonstrated via simulation studies that our proposed approach, as well as more computationally efficient subsets of our full proposed approach, have superior performance compared to existing methods. We applied our proposed approach to the PREDICT-HD study and found that the network edges did change with time leading up to and beyond diagnosis, with change points occurring at different times for different edges. For clinical symptoms, bradykinesia became well-connected with symptoms from several other domains. For imaging measures, we observed a loss of connection over time among gray matter regions, white matter regions, and the hippocampus. In the second part of this dissertation, we consider time-varying network models for settings in which data are not all Gaussian. We sought to compare longitudinal clinical symptom networks between patients with neuropathologically-defined Alzheimer's disease (AD) vs. neuropathologically-defined Lewy body dementia (LBD), two common types of dementia which can often be clinically misdiagnosed. Given that the clinical measures of interest were largely non-Gaussian, we examined the literature for undirected graphical models for mixed data types. We then proposed an extension to the existing time-varying mixed graphical model by adding time-varying adaptive lasso weights, modeling time in reverse in order to treat neuropathological diagnoses as baseline covariates. The proposed adaptive lasso extension serves a two-fold purpose: they alleviate well-known bias of 𝑙₁ penalization and they encourage temporal smoothness in edge estimation. We demonstrated the improved performance of our extension in simulations studies. Applying our method to the National Alzheimer's Coordinating Center database, we found that the edge structure surrounding the Wechsler Memory Scale Revised (WMS-R) Logical Memory parts IA (immediate recall) and IIA (delayed recall) may contain important markers for discriminant analysis of AD and LBD populations. In the third part of this dissertation, we explored a methodologically distinct area of research from the first two parts, moving from graphical models to functional data analysis. Our goal was to extract meaningful chronotypes, or phenotypes of circadian rhythms, from activity count data collected from accelerometers. Existing approaches for analyzing diurnal patterns using these data, including the cosinor model and functional principal components analysis, have revealed and quantified population-level diurnal patterns, but considerable subject-level variability remained uncaptured in features such as wake/sleep times and activity intensity. This remaining informative variability could provide a better understanding of chronotypes, or behavioral manifestations of one’s underlying 24-hour rhythm. Curve registration, or alignment, is a technique in functional data analysis that separates "vertical" variability in activity intensity from "horizontal" variability in time-dependent markers like wake and sleep times. We developed a parametric registration framework for 24-hour accelerometric rest-activity profiles that are represented as dichotomized into epoch-level states of activity or rest. Specifically, we estimated subject-specific piecewise linear time-warping functions parametrized with a small set of parameters. We applied this method to data from the Baltimore Longitudinal Study of Aging and illustrated how estimated parameters can give a more flexible quantification of chronotypes compared to traditional approaches.
62

Normativités et usages judiciaires des technologies : l’exemple controversé de la neuroimagerie en France et au Canada / Normativities and judicial uses of technologies : the controversed illustration of neuroimaging in France and Canada

Geneves, Victor 12 April 2019 (has links)
L’observation du système nerveux, de son métabolisme et de certaines de ses structures est possible grâce à la neuroimagerie. Une littérature importante issue du « neurodroit » véhicule des imaginaires et des fantasmes relatifs aux possibilités judiciaires qu’offriraient ces technologies.Qu’il s’agisse de détection du mensonge, d’identification cérébrale des individus dangereux ou encore de prédiction de comportements déviants, la neuroimagerie, en l’état actuel des technologies, ne peut pourtant être sérieusement conçue comme pouvant faire l’objet de telles applications.L’utilisation de la neuroimagerie dans le cadre d’expertises est néanmoins une réalité, dans les tribunaux canadiens comme dans la loi française.Cette thèse souligne que les conceptions des technologies dont témoignent les deux systèmes juridiques étudiés s’avèrent lacunaires, ce qui engendre des risques. Elle évoque les conditions du recours à une normativité extra-juridique, la normalisation technique, qui pourrait s’élaborer dans ce contexte controversé, et esquisse les traits d’un dialogue amélioré entre les normativités juridique et technologique. / Neuroimaging allows the observation of the nervous system, of both its metabolism and some of its structures. An important literature in “neurolaw” conveys illusions and fantaisies about the judicial possibilities that imaging technologies would contain.Whether it is about lies detection, cerebral identifications of dangerous individuals through their neurobiology or predictions of criminal behaviors, neuroimaging, in the current state of technologies, can not be seriously conceived as being able to offer such applications.Judicial uses of neuroimaging through expertise are a reality nonetheless, in Canadian courts as in French law.This thesis emphasizes that the conceptions of imaging technologies integrated in the two legal systems studied are incomplete, which creates an important amount of risks. It discusses the conditions for the use of an extra-legal normativity, the international technical standardization, which could be elaborated in this particular and controversial context, and outlines several features of an increased dialogue between legal and technological norms.
63

DESIGN OF A LOW PROFILE CONFORMAL ARRAY FOR TRANSCRANIALULTRASOUND IMAGING

Smiley, Aref 17 May 2018 (has links)
No description available.
64

Measuring brain activation through functional magnetic resonance imaging (fMRI) during visual task learning

Usmani, Mohd Saif January 2015 (has links)
No description available.
65

Limbic Morphometry in Individuals with Schizophrenia and Their Nonpsychotic Siblings

Slate, Rachael Olivia 22 June 2021 (has links)
The limbic system is hypothesized to play a critical role in pathophysiology of schizophrenia, with abnormalities thought to contribute to the expression of various aspects of the cognitive deficits and clinical symptoms. Psychosis is understood as highly heritable and family members, specifically non-affected siblings, while not displaying overt signs of the disorder, often exhibit features similar to those observed in patients, though to a lesser degree. The overarching aim of this project was to investigate the integrity of limbic circuitry in a sample of patients with schizophrenia and their non-affected siblings and examine its potential relationship with various clinical features of the illness. Cortical thickness of the entorhinal, parahippocampal, cingulate, and orbitofrontal cortices; as well as subcortical surface shape of the hippocampus and amygdala were the focus of this study. Findings from this study reveal relative similarity in limbic integrity between individuals with schizophrenia and theirnon-affected siblings, which are both disparate from healthy individuals. This suggests aspects of the neurobiological underpinnings of psychosis, particularly limbic regions, are genetically influenced regardless of symptom expression and are latent features in non-affected family members. Relationships between positive symptomatology and shape abnormalities of subcortical structures suggest a potential substrate for clinical characteristics in psychosis not evident in non-ill siblings.
66

The Investigation and Development of Novel Molecules, Models and Tools for the Treatment and Study of Schizophrenia

Daya, Ritesh P. January 2017 (has links)
Schizophrenia is a severe mental disorder that can manifest in various ways and is often characterized by the appearance of positive symptoms (hallucinations, delusions), negative symptoms (social and attention impairment) and cognitive dysfunction (thought disorders, memory and executive function impairments). Traditional treatment methodologies involve blocking the dopamine receptor by binding to the same site as dopamine. These treatments are largely inadequate and lead to an array of adverse side effects. Side effects include weight gain, diabetes, and movement disorders; which critically limit the therapeutic value of antipsychotic drug treatment. Limited symptom control and severe adverse effects have led to poor drug adherence and a deprived quality of life for patients suffering from schizophrenia. The complex etiology of schizophrenia combined with a lack of effective translational models and tests to represent and assess the illness have hindered drug development. Evidently, there is a strong demand for a new generation of pharmaceuticals and an improved translational pipeline for the treatment of schizophrenia. The collection of studies presented here contribute to the advancement of translational tools for drug discovery, the establishment of pre-clinical models to embody the various symptoms, and the development of a novel drug candidate for schizophrenia. Allosteric modulation of G-protein coupled receptors is evolving as a new wave of therapy with promising implications for various CNS disorders. Allosteric compounds regulate binding without blocking the receptor. PAOPA, a dopamine D2 receptor allosteric modulator, prevents and treats schizophrenia-like symptoms in pre-clinical animal models of schizophrenia with no apparent adverse effects. The studies outlined in this thesis further categorize PAOPA as a novel therapeutic candidate for schizophrenia. Moreover, the findings presented here provide further insight into the potential therapeutic mechanism of action of PAOPA and set the foundation for the development of a new generation of antipsychotic drugs. These studies constitute an innovative approach to expanding research in the field of drug development for schizophrenia. / Thesis / Doctor of Philosophy (PhD)
67

Metamemory or just memory? : searching for the neural correlates of judgments of learning

Skavhaug, Ida-Maria January 2010 (has links)
Judgments of Learning (JOLs) are judgments of the likelihood of remembering recently studied material on a future test. Although JOLs have been extensively studied, particularly due to their important applications in education, relatively little is known about the cognitive and neural processes supporting JOLs and how these processes relate to actual memory processing. Direct access theories describe JOLs as outputs following direct readings of memory traces and hence predict that JOLs cannot be distinguished from objective memory encoding operations. Inferential theories, by contrast, claim JOLs are products of the evaluation of a number of cues, perceived by learners to carry predictive value. This alternative account argues that JOLs are made on the basis of multiple underlying processes, which do not necessarily overlap with memory encoding. In this thesis, the neural and cognitive bases of JOLs were examined in a series of four ERP experiments. Across experiments the study phase ERP data showed that JOLs produce neural activity that is partly overlapping with, but also partly distinct from, the activity that predicts successful memory encoding. Furthermore, the neural correlates of successful memory encoding appear sensitive to the requirements to make a JOL, emphasising the close interaction between subjective and objective measures of memory encoding. Finally, the neural correlates of both JOLs and successful memory encoding were found to vary depending on the nature of the stimulus materials, suggesting that both phenomena are supported by multiple cognitive and neural systems. Although the primary focus was on the study phase ERP data, the thesis also contains two additional chapters reporting the ERP data acquired during the test phases of three of the original experiments. These data, which examined the relative engagements of retrieval processes for low and high JOL items, suggest that encoding processes specifically resulting in later recollection (as opposed to familiarity) form one reliable basis for making JOLs. Overall, the evidence collected in this series of ERP experiments suggests that JOLs are not pure products of objective memory processes, as suggested by direct access theories, but are supported by neural systems that are at least partly distinct from those supporting successful memory encoding. These observations are compatible with inferential theories claiming that JOLs are supported by multiple processes that can be differentially engaged across stimulus contents.
68

Localisation sonore chez les aveugles : l'influence de l'âge de survenue de la cécité

Voss, Patrice January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
69

Caractérisation de la réponse des corps pédonculés par imagerie cérébrale fonctionnelle in-vivo chez la Drosophile / Characterization the Drosophila Mushroom-Bodies Response by Functional In-Vivo Brain Imaging

Pavot, Pierre 18 December 2014 (has links)
La mouche Drosophila melanogaster est un modèle de choix dans l’étude des grandes fonctions neurophysiologiques notamment en raison de la disponibilité d’une importante variété d’outils disponibles (approches génétiques, pharmacologiques et comportementales). Le cerveau de la mouche, malgré sa simplicité apparente, est capable de traiter des fonctions complexes d’intégration des différents paramètres environnementaux nécessaires à sa survie. Dans le cerveau drosophile, les corps pédonculés (CP) sont des structures impliquées dans de nombreuses fonctions neurophysiologiques de premier plan telles que l'apprentissage et la mémoire olfactive, la régulation de l’activité locomotrice, l'orientation spatiale, la régulation du sommeil ou encore la prise de décision. Il a été montré par des approches associant essentiellement observations comportementales et outils génétiques que la voie de signalisation de l'AMPc joue un rôle crucial dans la réalisation des fonctions diverses des CP. Les cellules de Kenyon (CK) qui sont les cellules intrinsèques des CP, reçoivent principalement des afférences du système olfactif par l’intermédiaire des neurones de projections (PN) en provenance des lobes antennaires et des afférences neuromodulatrices (dopaminergiques et octopaminergiques). Les synapses entres PN et CK se font sur un mode cholinergique grâce à des récepteurs canaux à l’acétylcholine de type nicotinique (nAchR). Nous avons utilisé une technique récente d’imagerie calcique par bioluminescence utilisant une protéine recombinante, la GFP-Aequorine. Cette technique nous a permis de suivre l’activité cellulaire calcique consécutive à l’application de nicotine, un agoniste des nAchR. Grâce à l’observation de ces réponses suite à une combinaison d’approches génétiques corroborée par des approches pharmacologiques, nous avons pu mettre en évidence une modulation complexe et régionalisée de la réponse calcique dans les CP par l’AMPc et d’autres différents partenaires tels que des canaux K+ et Ca2+. Dans un premier temps, nous avons démonté l’existence d’une modulation directe de l’intensité de la réponse par l’AMPc. Nous avons également montré, pour la première fois, que des réponses Ca2+ « spontanées » peuvent être directement inductibles par augmentation de l’AMPc. Nous avons mis en évidence l’existence d’un nouveau partenaire de la modulation de la réponse des CP indépendant de la PKA : les CNG (Cyclic Nucleotides Gated Channels) dont le rôle n’avait jusqu’ici jamais été démontré dans les corps pédonculés. Enfin nous avons pu observer une régionalisation de la régulation de l’activité Ca2+ des CP par l’AMPc. Dans un deuxième temps nous nous somme intéressé aux principales conductances calciques et potassiques. Nous avons mis en évidence que différents canaux calciques voltages dépendants (VGCC) sont impliqués de façon régionalisée et séquentielle dans la formation de la réponse calcique. Il a pu également être démontré que le signal est modulé de façon différentielle dans les calices et les lobes par l’AMPc à travers différents canaux potassiques. Enfin des protocoles originaux ont été développés, tels que la micro application de drogue ou l’électrostimulation permettant d’étudier la neuromodulation dans les CP, à réutiliser pour des travaux ultérieurs du laboratoire. Ce travail est une première étape dans la compréhension des voies de signalisations et des mécanismes intracellulaires impliqués dans l’apprentissage et la mémoire olfactive. / In Drosophila, the Mushroom-Bodies (MBs) are implicated in multiple functions, as olfactory learning and memory, locomotor activity, spatial orientation, sleep, decision making, and up to now but indirectly, in various addiction. Notably, the MBs, which express the nAchR, receive their main inputs from the cholinergic olfactory pathways, through the Projections Neurons (PNs). In this thesis we characterized, at the cellular and molecular levels, the nicotine effect on the Kenyon cells (KCs: the intrinsic neurons) of the Mushroom-Bodies. We used the in-Vivo brain imaging approach, based on the Ca2+-Sensitive bioluminescent probe (GFP-Aequorin), to characterize the nicotinic induced Ca2+-Response on the KCs of the MBs. More specifically we searched the role of different partners involved in the cAMP pathway, in order to understand their roles in the different components of the response and in its modulation. First using both genetics and pharmacological approaches to interfere with different components of the cAMP signaling pathway, we first show that the Ca2+-Response is proportional to the levels of cAMP. Second, we reveal that an acute change in cAMP levels is sufficient to trigger a Ca2+-Response. Third, genetic manipulation of protein kinase A (PKA), a direct effector of cAMP, suggests that cAMP also has a PKA-Independent effect through the cyclic nucleotide-Gated Ca2+-Channel (CNG). Finally, the disruption of calmodulin, one of the main regulators of the rutabaga adenylate cyclase (AC), yields different effects between the calyx/cell-Bodies and the lobes, suggesting a differential and regionalized regulation of ACSecond we exploited both genetic approaches to interfere with different types of Ca2+- and K+-Channels, first we show that the disruption of the VGCC, as cacophony, Dmcα1d and Dmcα1g lead to a striking decrease of the Ca2+-Response both in the CCB and the lobes. Moreover, for two of them, cacophony and Dmcα1d, the duration of the response is importantly increased. Second, the disruption of the fast inactivating K+-Currents, as shaker (sh), shaker-Like (shal) and slowpoke (slo) reveal that the knocked-Down of shal and slo lead to a striking decrease of the Ca2+-Response, while the knocked-Down of sh has only a mild effect. Interestingly, the stimulation of the adenylate cyclase (AC) by the forskolin with the various K+-Channels disruption show an antagonist effect of the cAMP in the CCB between sh (inhibitory) and slow (excitatory) while AC simulation mediate excitatory effects in the ML though both shal and sh. Finally, the knock-Down of the two slow inactivating K+-Currents as shaker w (shaw) and shaker b (shab) also yields to a strong decrease of the Ca2+-Response In conclusion, our results provide new insights into the complexity of the Ca2+-Response in the MBs and are a first step toward deciphering the roles of the VGCC and K+-Channels in the multiples roles of the MBs. Finaly we developed several original protocols to explore the role of the neuromodulation on the KC.This work constitutes an important step toward a better understanding of the pathway required in learning and memory.
70

Inhibitory mechanisms for visual learning in the human brain

Frangou, Polytimi January 2018 (has links)
Identifying targets in cluttered scenes is critical for our interactions in complex environments. Our visual system is challenged to both detect elusive targets that we may want to avoid or chase and discriminate between targets that are highly similar. These tasks require our visual system to become an expert at detecting distinctive features that help us differentiate between indistinguishable targets. As the human brain is trained on this type of visual tasks, we observe changes in its function that correspond to improved performance. We use functional brain imaging, to measure learning-dependent modulations of brain activation and investigate the processes that mediate functional brain plasticity. I propose that dissociable brain mechanisms are engaged when detecting targets in clutter vs. discriminating between highly similar targets: for the former, background clutter needs to be suppressed for the target to be recognised, whereas for the latter, neurons are tuned to respond to fine differences. Although GABAergic inhibition is known to suppress redundant neuronal populations and tune neuronal representations, its role in visual learning remains largely unexplored. Here, I propose that GABAergic inhibition plays an important role in visual plasticity through training on these tasks. The purpose of my PhD is to investigate the inhibitory mechanisms that mediate visual perceptual learning; in particular, learning to detect patterns in visual clutter and discriminate between highly similar patterns. I show that BOLD signals as measured by functional Magnetic Resonance Imaging (fMRI) do not differentiate between the two proposed mechanisms. In contrast, Magnetic Resonance Spectroscopy (MRS) provides strong evidence for the distinct involvement of GABAergic inhibition in visual plasticity. Further, my findings show GABA changes during the time-course of learning providing evidence for a distinct role of GABA in learning-dependent plasticity across different brain regions involved in visual learning. Finally, I test the causal link between inhibitory contributions and visual plasticity using a brain stimulation intervention that perturbs the excitation-inhibition balance in the visual cortex and facilitates learning.

Page generated in 0.1334 seconds