Spelling suggestions: "subject:"bregman algorithm"" "subject:"bruegman algorithm""
1 |
PARAMETER SELECTION RULES FOR ILL-POSED PROBLEMSPark, Yonggi 19 November 2019 (has links)
No description available.
|
2 |
First-order gradient regularisation methods for image restoration : reconstruction of tomographic images with thin structures and denoising piecewise affine imagesPapoutsellis, Evangelos January 2016 (has links)
The focus of this thesis is variational image restoration techniques that involve novel non-smooth first-order gradient regularisers: Total Variation (TV) regularisation in image and data space for reconstruction of thin structures from PET data and regularisers given by an infimal-convolution of TV and $L^p$ seminorms for denoising images with piecewise affine structures. In the first part of this thesis, we present a novel variational model for PET reconstruction. During a PET scan, we encounter two different spaces: the sinogram space that consists of all the PET data collected from the detectors and the image space where the reconstruction of the unknown density is finally obtained. Unlike most of the state of the art reconstruction methods in which an appropriate regulariser is designed in the image space only, we introduce a new variational method incorporating regularisation in image and sinogram space. In particular, the corresponding minimisation problem is formed by a total variational regularisation on both the sinogram and the image and with a suitable weighted $L^2$ fidelity term, which serves as an approximation to the Poisson noise model for PET. We establish the well-posedness of this new model for functions of Bounded Variation (BV) and perform an error analysis through the notion of the Bregman distance. We examine analytically how TV regularisation on the sinogram affects the reconstructed image especially the boundaries of objects in the image. This analysis motivates the use of a combined regularisation principally for reconstructing images with thin structures. In the second part of this thesis we propose a first-order regulariser that is a combination of the total variation and $L^p$ seminorms with $1 < p \le \infty$. A well-posedness analysis is presented and a detailed study of the one dimensional model is performed by computing exact solutions for simple functions such as the step function and a piecewise affine function, for the regulariser with $p = 2$ and $p = 1$. We derive necessary and sufficient conditions for a pair in $BV \times L^p$ to be a solution for our proposed model and determine the structure of solutions dependent on the value of $p$. In the case $p = 2$, we show that the regulariser is equivalent to the Huber-type variant of total variation regularisation. Moreover, there is a certain class of one dimensional data functions for which the regularised solutions are equivalent to high-order regularisers such as the state of the art total generalised variation (TGV) model. The key assets of our regulariser are the elimination of the staircasing effect - a well-known disadvantage of total variation regularisation - the capability of obtaining piecewise affine structures for $p = 1$ and qualitatively comparable results to TGV. In addition, our first-order $TVL^p$ regulariser is capable of preserving spike-like structures that TGV is forced to smooth. The numerical solution of the proposed first-order model is in general computationally more efficient compared to high-order approaches.
|
3 |
Numerical Methods for Multi-Marginal Optimal Transportation / Méthodes numériques pour le transport optimal multi-margesNenna, Luca 05 December 2016 (has links)
Dans cette thèse, notre but est de donner un cadre numérique général pour approcher les solutions des problèmes du transport optimal (TO). L’idée générale est d’introduire une régularisation entropique du problème initial. Le problème régularisé correspond à minimiser une entropie relative par rapport à une mesure de référence donnée. En effet, cela équivaut à trouver la projection d’un couplage par rapport à la divergence de Kullback-Leibler. Cela nous permet d’utiliser l’algorithme de Bregman/Dykstra et de résoudre plusieurs problèmes variationnels liés au TO. Nous nous intéressons particulièrement à la résolution des problèmes du transport optimal multi-marges (TOMM) qui apparaissent dans le cadre de la dynamique des fluides (équations d’Euler incompressible à la Brenier) et de la physique quantique (la théorie de fonctionnelle de la densité ). Dans ces cas, nous montrons que la régularisation entropique joue un rôle plus important que de la simple stabilisation numérique. De plus, nous donnons des résultats concernant l’existence des transports optimaux (par exemple des transports fractals) pour le problème TOMM. / In this thesis we aim at giving a general numerical framework to approximate solutions to optimal transport (OT) problems. The general idea is to introduce an entropic regularization of the initialproblems. The regularized problem corresponds to the minimization of a relative entropy with respect a given reference measure. Indeed, this is equivalent to find the projection of the joint coupling with respect the Kullback-Leibler divergence. This allows us to make use the Bregman/Dykstra’s algorithm and solve several variational problems related to OT. We are especially interested in solving multi-marginal optimal transport problems (MMOT) arising in Physics such as in Fluid Dynamics (e.g. incompressible Euler equations à la Brenier) and in Quantum Physics (e.g. Density Functional Theory). In these cases we show that the entropic regularization plays a more important role than a simple numerical stabilization. Moreover, we also give some important results concerning existence and characterization of optimal transport maps (e.g. fractal maps) for MMOT .
|
Page generated in 0.0626 seconds