• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 14
  • 9
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 115
  • 22
  • 20
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Brine treatment using natural adsorbents

Mabovu, Bonelwa January 2011 (has links)
>Magister Scientiae - MSc / Studies involving the use of natural clays such as bentonite, montmorillonite and natural zeolite clinoptilolite in water treatment have been reported. Researchers suggested cost effective processes, such as ion-exchange and adsorption for the removal of heavy metals from waste waters by using naturally occurring and synthetic materials. The current study investigated application of natural adsorbents in brine treatment. Brines are hypersaline waters generated in power stations and mining industries rich in Mg2+, K+, Ca2+,Na+, so,': cr and traces of heavy metals, thus there is a need for these brines to be treated to recover potable water and remove problematic elements. Natural adsorbents have been successfully used in waste water treatment because of their high surface area and high adsorptive properties when they are conditioned with acid or base. The natural adsorbents used in this study were obtained from Ecca Holdings company (Cape bentonite mine) Western Cape in South Africa, comprising bentonite clay and natural zeolite (clinoptilolite) and another clinoptilolite sample was obtained from Turkey. These adsorbents were investigated in their natural and pretreated form for removal of toxic elements in brine water. The pretreatment was aimed at removing Na+, K+, Ca2+, Mg2+ from the clinoptilolite as well as the bentonite and replacing these cations with the H+ cation to activate the materials. The cation exchange capacity (CEC) of natural zeolite from South Africa was found to be 2.14 meq/ g, Turkish Clinoptilolite was 2.98 meq/ g while South African bentonite was 1.73 meq/g. at 25°C using ammonium acetate (pH 8.2) method. Characterization of these natural adsorbents was done prior to pretreatment and after the treatment. ICP-AES analysis was used for determination of toxic elements in brines before and after sorption. The morphology of clays was characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (N2-BET) and Scanning electron microscopy (SEM) for confirmatory purposes and X-ray Fluorescent spectroscopy (XRF) was used for the composition analysis of the natural adsorbent. The results from batch experiments prior to pretreatment of the natural adsorbents showed that these natural adsorbents contained Mg2+, K+, Ca2+, Na+ in their structures as charge balancing cations, thus needed pretreatment to remove the cations. The natural adsorbents were pre-treated with 0.02M HCI. After the pretreatment of natural adsorbents it was possible to enhance the percentage removal of the major cations from brine, and the Na+ and Mg2+ removal achieved (86 % and 85% respectively) from brine was more than C02+ (70% ) the SC was the adsorbent one that gave highest removal of cations in the brines. Trace elements removal was high with Cu2+and Zn2+ being the highest of toxic elements in brine. The optimum contact for the toxic element removal was found to be 30 min for the Turkish clinoptilolite and 1 hr for the South African clinoptilolite and South African bentonite clay. Leaching of Ae+ and Si4+ during adsorption was also investigated and it was found that less than 1 ppm of A13+ and Si4+ were leached into the solution during adsorption experiments indicating that these materials were stable. The investigation of pH showed that natural adsorbents did not perform well at low pH of 4 and 6. The adsorbents were able to work efficiently at the natural pH of 8.52 of the brine solution. These results show that natural adsorbents hold great potential to remove cationic major components and selected heavy metal species from industrial brine wastewater. Heterogeneity of natural adsorbents samples, even when they have the same origin, could be a problem when wastewater treatment systems utilizing natural clinoptilolite and bentonite are planned to be developed. Therefore, it is very important to characterize the reserves fully in order to make them attractive in developing treatment technologies.
52

Red Sea Physicochemical Gradients as Drivers of Microbial Community Assembly

Barozzi, Alan 02 1900 (has links)
Environmental gradients exist at global and local scales and the variable conditions they encompass allow the coexistence of different microbial assemblages. Studying gradients and the selection forces they enclose can reveal the spatial succession and interactions of microorganisms and, therefore, how they are assembled in functionally stable communities. By combining high-throughput sequencing technology and laboratory experimental approaches, I investigated the factors that influence the microbial community assemblages in two types of environmental gradients in the Red Sea. I have studied the communities in the chemoclines occurring at the transition zones along the interfaces between seawater and the Deep Hypersaline Anoxic Brines (DHABs) at the bottom of the Red Sea. Across these chemoclines salinity increases of 5-10 times respect to the overlying seawater. I compared the microbial community diversity and metabolisms in the chemoclines of five different DHABs, finding different microbial community compositions due to the different DHABs characteristics, but the same succession of metabolisms along the five interfaces. From the Suakin Deep brine, I assembled the genome of a novel bacterial phylum and revealed the metabolic features that allow this organism to cope with the challenging variable conditions along the chemocline. In an alternative environmental system, I studied the effect of different thermal regimes on the microbiome of coastal sediment exposed to different yearly ranges of temperature variation. Sediment bacterial communities living under larger temperature variations are more flexible and can grow under a larger range of thermal conditions than communities experiencing narrower temperature ranges. My results highlight the large metabolic flexibility of microorganisms and their capacity to efficiently self-organize in complex functional assemblages under extreme ranges of environmental conditions.
53

Effects of Heavy Metals (Cadmium, Copper, and Mercury) on Reproduction, Growth, and Survival of Brine Shrimp (Artemia salina) from the Great Salt Lake

Gebhardt, Karl A. 01 May 1976 (has links)
The purpose of this paper is to report findings concerning the effects of cadmium , copper, and mercury on the brine shrimp Artemia Salina, of the Great Salt Lake. Metal toxicity was observed in relation to acute susceptibility, growth, reproduction, and hatching of the brine shrimp. Heavy metal concentrations such as cadmium, copper, and mercury are known to be considerably higher in the Great Salt Lake than those in both freshwater and seawater. No published study has been concerned with heavy metal effects on organisms in salinities greater than seawater (35 grams per liter total dissolved solids). The experiments reported in this paper were carried out in salinities approximating the Great Salt Lake (150-320 grams per liter total dissolved solids). Results of this study indicate that cadmium, copper, and mercury toxicities to the brine shrimp may not be comparable at varying salinities. Findings of acute toxicity experiments were compared to other heavy metal studies on marine organisms. The brine shrimp was found to be very resistant to cadmium and copper poisoning and moderately resistant to mercury. Neither cadmium nor copper inhibited hatching of the brine shrimp eggs although mercury caused severe inhibition at concentrations of 0.3 milligrams per liter. Only cadmium at concentrations between 1.0 and 33 milligrams per liter significantly suppressed growth rate and reproduction. Mercury and copper were not found to affect growth and reproduction below concentrations causing acute poisoning. Mercury was found to be the most lethal to the adult brine shrimp with a range of times to 50 percent mortality from 126 to 8.5 hours at mercury concentrations of 0.01 to 100 milligrams per liter respectively. Copper caused mortalities at concentrations of 1 to 67 milligrams per liter with respective times to 50 percent mortality of 124 and 12 hours. Copper was shown to precipitate out at concentrations near 12 milligrams per liter, Cadmium was found to be the least lethal with a range of times to 50 percent mortality from 94 to 320 hours with respective cadmium concentrations of 100 and 3.3 milligrams per liter.
54

Winter Waterbird Ecology on the Great Salt Lake, Utah, and Interactions with Commercial Harvest of Brine Shrimp Cysts

Roberts, Anthony J. 01 December 2013 (has links)
Interactions among commercial fisheries and birds have been studied in open ocean ecosystems and at aquaculture facilities. On the Great Salt Lake (GSL), Utah, USA, a commercial harvest of brine shrimp (Artemia franciscana) eggs (i.e. cysts) occurs annually during fall and winter. Coinciding with commercial harvest is the use of the GSL by millions of waterbirds which has the potential to result in conflict among industry and birds. The objectives of my research were to examine fall and winter ecology of birds using the GSL and interactions with the brine shrimp cyst harvest. I examined the influence of temperature and food availability on the number and distribution of waterfowl and eared grebes (Podiceps nigricollis). I also assessed the diets of the same species to see how much cyst biomass is being consumed by birds compared to removal by commercial harvest. A mass die-off (i.e. downing) of migrating eared grebes occurred during my research, so I assessed differences among birds that died and those that did not to better explain this phenomenon. Finally, I assessed the breeding origin of northern shovelers (Anas clypeata) wintering on the GSL using stable isotopeand banding data.I found that commercial harvest boats did not influence duck population numbersor distribution; rather temperature and food availability most influenced abundance and distribution, though this influence varied by species. Compared to commercial harvest, northern shovelers, green-winged teal (Anas crecca), and eared grebes removed a small fraction of the total amount of cysts that were removed from the GSL. Waterfowl diets were mainly wetland plant seeds during fall and spring, but when freshwater marshes were frozen in winter, ducks ate mostly brine shrimp cysts and brine fly (Ephydra spp.) larvae. Eared grebes are highly associated with saltwater habitats and they consumed adult brine shrimp most of the fall. Eared grebes that perished during the downing had mercury and selenium concentrations above levels seen in pre- and post-downing birds and higher than observed concentration that impact bird species, providing a potential ultimate cause of death during snowstorms that accompany most downings. Stable isotope analysis indicated northern shovelers that winter on the GSL had breeding origins throughout the specie’s range, but most came from local or southern Prairie Pothole Region breeding populations.
55

Eared Grebe Nesting Ecology and Chronology Along the Great Salt Lake, Utah

Delahoussaye, Leah M. 01 August 2019 (has links)
Eared Grebes (Podiceps nigricollis) are migratory birds that build their nests over water and in large groups called colonies. Their typical breeding range is in central southern Canada and northern United States; however, a previously uncertain number of Eared Grebes (grebes) also nest around the Great Salt Lake (GSL), Utah, at the southern edge of their breeding range. Little is known about the habitat requirements for grebe nesting colonies at such low latitudes and if they are different from colonies found elsewhere. My objectives for this research were to determine the status of the grebe nesting population as well as their habitat characteristics along the GSL in freshwater wetlands. I found over 4,280 grebe nests distributed among 35 colonies. Grebes built nests by mounding submerged aquatic vegetation (SAV) beginning the first week of June. The results from my habitat study show that grebes prefer to nest in areas with an average water depth of 48 cm, high invertebrate density, and abundant areas of floating SAV. Water depth and vegetation type at colony sites as well as timing of nesting and average number of eggs per nest of GSL colonies differed from colonies located at more northern latitudes. The differences in nesting could be attributed to the need to wait for SAV to grow and form mats on the water’s surface, or a need to wait for their food source to reach harvestable size. After grebes leave their nesting grounds, they stop at the GSL where they prepare for their final migration southward by consuming their fill of brine shrimp (Artemia franciscana). Brine shrimp are tiny invertebrates that are well-adapted to salty environments; they produce hard-walled eggs called cysts which are of great economic value and are commercially harvested from the GSL. I compared cyst viability, which is the percentage of cysts in a condition conducive to hatching, for cysts that had passed through the digestive tract of grebes and cysts samples obtained from the GSL. Only 30% of the cysts that had passed through grebes were viable, whereas 63% of cysts from the GSL were viable.
56

Supercritical Water Desalination: Thermodynamic Characterization and Economic Analysis

Able, Chad 16 September 2020 (has links)
No description available.
57

Characterization of Raw Materials for Salt Extraction from Lake Katwe, Uganda

Kasedde, Hillary January 2013 (has links)
Uganda is well endowed with economic quantities of salt evident in the interstitial brines and evaporite deposits of Lake Katwe, a closed saline lake located in the western branch of the great East African rift valley. Currently, rudimentally methods of salt mining based on solar evaporation of brine continue to be used for salt extraction at the lake. These have proved to be hazardous and unsustainable to the salt miners and the environment. In this work, literature concerning the occurrence of salt and the most common available technologies for salt extraction is documented. Field studies were undertaken to characterize the salt lake deposit and to devise strategies of improving salt mining and extraction from the salt lake raw materials. The mineral salt raw materials (brines and evaporites) were characterized to determine their physical, chemical, mineralogical, and morphological composition through field and laboratory analyses. In addition, laboratory extraction techniques were undertaken to evaluate possibilities of future sustainable salt extraction from the lake deposit. Also, PHREEQC simulations using Pitzer models were carried out to determine the present saturation state of the lake brine and to estimate which salts and the order in which they precipitate from the brine upon concentration by evaporation. Results reveal that the raw materials from the salt lake contain substantial amounts of salt which can be commercialized for optimum production. The brines are highly alkaline and rich in Na+, K+, Cl-, SO42-, CO32-, and HCO3-. Moreover, they contain trace amounts of Mg2+, Ca2+, Br-, and F-. The lake is hydro-chemically of a carbonate type with the brines showing an intermediate transition between Na-Cl and Na-HCO3 water types. The evaporites are composed of halite mixed with other salts such as hanksite, burkeite, trona etc, with their composition varying considerably within the same grades. The laboratory extraction experiments indicate that various types of economic salts such as thenardite, anhydrite, mirabilite, burkeite, hanksite, gypsum, trona, halite, nahcolite, soda ash, and thermonatrite precipitate from the brine of Lake Katwe. The salts crystallize in the order following the sequence starting with sulfates, followed by chlorides and carbonates, respectively. Moreover, thermodynamic modeling in PHREEQC accurately predicted the solubility and sequence of the salt precipitation from the lake brine. Understanding the sequence of salt precipitation from the brine helps to control its evolution during concentration and hence, will lead to an improved operating design scheme of the current extraction processes. The work providesinformation towards future mineral salt exploitation from the salt lake. / <p>QC 20131129</p>
58

Fault Detection and Diagnosis for Brine to Water Heat Pump Systems

Vecchio, Daniel January 2014 (has links)
This research project is part of a wider project called Smart Fault Detection and Diagnosis for HeatPump Systems currently under development by the Royal Institute of Technology (KTH).Generally, maintenance, diagnosis and repair of heat pumps are manual operations. The qualityof the service relies almost exclusively on the skills, experience and motivation of the HVAC-Rtechnician. Moreover, professional technicians are only called up after a remarkable failure occursand not to perform routine follow up.The main objective of this master thesis will be to propose a method for fault detection of thebrine to water heat pump systems under operating conditions. It will be done by focusing into ninetests faults related to the first boundary level which represents the heat pump unit, the brine andwater loop. A model based approach was developed to generate features and parameters capableof reading the status of the system. The fault detection was done by imposing test faults in the model and evaluating the trend of the performance parameters. By comparing the predicted fault free values with the actual values (Residuals) from the model, several algorithms were proposed and conducted in order to obtain an online fault detection and diagnosis. It is concluded that the fault trend analysis can, in principle, provide a solution to detect faults in heat pump systems. The algorithms are considered user friendly tools, however more improvementsneeds to be done to include more faults and increase its resolution.
59

Experimental Analysis Of The Hydrogen Sulfide Absortion Phenomena In Brine/oil Mixtures As A Function Of System Pressure And H2s

Zea, Luis 01 January 2008 (has links)
In underground oil reservoirs, Hydrogen sulfide is usually found coexisting with the oil due to bacteria reduction over a long period of time. The amount of H2S in the oil varies from place to place around the globe. When the oil extraction process begins, the presence of Hydrogen sulfide becomes noticeable as drilling tools, piping and other equipment suffer from sulfide stress cracking, electrochemical corrosion and corrosion fatigue. For this reason, the oil industry invests millions of dollars per year trying to find better ways to reduce the amount of H2S in oil. An important part of the current investigations deals with brine (sea water)/oil mixtures. The reasons are two-fold: 1) one way of extracting the petroleum from the reservoir is by injecting brine into it and since it has a higher density than oil, the latter will be ejected up to the surface. Taking into account the complex fluid flow occurring within the reservoir it is easy to understand that some brine will also be present as part of the ejected fluid; 2) brine is already present in the reservoir, so independent of the extraction method used, there will be a brine/oil mixture in the ejected flow. When brine and oil have absorbed H2S under pressure in the reservoir and then suffer a decompression during the extraction process, a certain amount of H2S is released from the liquid phase. In order to have a better prediction of how much Hydrogen sulfide can be liberated a good understanding of H2S absorption by these liquids is necessary. The amount of gas a solvent absorbs is a function of pressure, original gas concentration and temperature as described by Henry's Law. The purpose of this thesis is to experimentally analyze how much of the corrosive gas is absorbed into different brine/oil mixtures, and brine and oil, separately. In order to find sufficient data for a thorough analysis, different reservoir simulation scenarios were created. The liquids were mixed from pure brine to pure oil, resulting in 33% and 66% water cuts. Data were obtained at 2 pressures of 20atm and 70atm at room temperature. H2S concentration was also a variable, changing the original gas concentration through different values: 50, 100, and 300ppm. These experiments were conducted in an autoclave system and will better explain the hydrostatic process that occurs inside the reservoir. It was found that throughout all the water cuts, the role that total pressure plays in the absorption phenomena is of less importance as the original H2S concentration is increased. In the same manner it was observed that the highest mass-absorption ratios are always found between 50 and 100ppm and the lowest at 300ppm, this is observed for all water cuts and total pressures. Another important finding was that the ability to absorb the corrosive gas decreases as the original H2S concentration increases and this proves to be true for all water cuts and system pressures. After conducting these different reservoir scenarios, tests were conducted to simulate 300m of the horizontal section of the pipe that connects the head of the well with the platform. This was done with a high pressure 300-meter long loop. It was found that the corrosive gas is absorbed at a higher rate when there is a flow, opposite to a hydrostatic case. Henry's Law constant was identified for each water cut and each pressure, however, the test procedure could not be validated since the gas being studied was not in its pure form. Understanding the absorption phenomena of Hydrogen sulfide in different water cuts will definitely be of great help to the oil industry to make better forecasts of H2S concentrations being ejected from each well.
60

Improvement of Chilling Efficiency and Product Quality of Broiler Carcasses Using Sub-zero Saline Solutions for Chilling

Metheny, Morgan 01 March 2018 (has links) (PDF)
Sub-zero saline solutions were evaluated for the improvement of chilling efficiency and product quality of broiler carcasses. In this study, four experiments were conducted to chill broiler carcasses using different saline solutions and chilling temperatures in the Meat Processing Center at California Polytechnic State University (Cal Poly, San Luis Obispo, CA) or in the processing plant at Foster Farms (Livingston, CA). In Experiment I, three salt concentrations and solution temperatures (0% NaCl/0.5°C, 4% NaCl/-2.41°C, and 8% NaCl/-5.08°C) were used to chill carcasses. The fillets in brine chilling at sub-zero temperatures showed lower shear forces than the fillets in 0% NaCl control solution. In Experiment II, three salt concentrations (0% NaCl/0.5°C, 4% NaCl/-2.41°C, and 8% NaCl/-5.08°C) were used to chill carcasses with/without pre-chilling in 0% NaCl/0.5ºC or 0% NaCl/14°C. Fillets from the carcasses in 4% NaCl/-2.41°C significantly improved tenderness (P < 0.05), with no significant difference observed for the shear force of 8% NaCl/-5.08°C, regardless of pre-chilling. In Experiment III, four salt concentrations (0% NaCl/0.5°C, 1% NaCl/-0.6°C, 2% NaCl/-1.2°C, and 3% NaCl/-1.8°C) were used to chill carcasses. The shear force of fillets decreased as the salt content increased and chilling temperature decreased from 0%NaCl/0.5°C to 3%NaCl/-1.8°C, with the lowest shear force observed in 3% NaCl brine at -1.8°C (P < 0.05). The chilling time (90 min) of 3% NaCl was reduced by 25 min (or 22%) compared to water control (115 min), with an intermediate reduction (13 - 17%) v seen for other NaCl solutions (95 – 100 min). Breast fillets showed no significant difference in chilling yield, pH, R-value, and sarcomere length for raw meats as well as in cooking yield and salt content for cooked fillets across all treatments (P > 0.05). In Experiment IV, three salt concentrations (0% NaCl/0.5°C, 3% NaCl/-1.8°C, and 4% NaCl/-2.41°C) were used to chill carcasses. The chilling time (55 min) of 4% NaCl was reduced by 35 min (or 39%) compared to the time (90 min) of water control, with an intermediate reduction (11%) seen for 3% NaCl solution. Control fillets in 0% NaCl showed a higher shear force than the fillets in sub-zero brine chilling (P < 0.05). Based on these results, broiler carcasses chilled in 4% NaCl/-2.41°C appears to be ideal to improve both chilling efficiency and meat tenderness compared to the carcasses chilled in 0% NaCl/0.5°C.

Page generated in 0.0443 seconds