Spelling suggestions: "subject:"fruit bland gaussian"" "subject:"fruit bland gaussiana""
1 |
Tests d'indépendance en analyse multivariée et tests de normalité dans les modèles ARMALafaye de Micheaux, Pierre 12 1900 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
2 |
Agrégation d'estimateurs et méthodes à patch pour le débruitage d'images numériquesSalmon, Jospeh 09 December 2010 (has links) (PDF)
Le problème étudié dans cette thèse est celui du débruitage d'images numériques cor- rompues par un bruit blanc gaussien. Les méthodes utilisées pour récupérer une meilleure image reposent sur les patchs et sont des variantes des Non-Local Means. Les contributions de la thèse sont à la fois pratiques et théoriques. Tout d'abord, on étudie précisément l'influence des divers paramètres de la méthode. On met ensuite en lumière une lim- ite observée sur le traitement des bords par les méthodes à patchs habituelles. On donne alors une meilleure façon de combiner l'information fournie à partir des patchs pour estimer pixel par pixel. D'un point de vue théorique, on présente un cadre non asymptotique pour contrôler notre estimateur. On donne alors des résultats de type inégalités oracles pour des estimateurs vérifiant des propriétés plus restrictives. Les techniques utilisées reposent sur l'agrégation d'estimateurs, et plus particulièrement sur l'agrégation à poids exponentiels. La méthode requiert typiquement une mesure du risque, obtenue à travers un estimateur sans biais de celui-ci, par exemple par la méthode de Stein. Les méthodes de débruitage étudiées sont analysées numériquement par simulations.
|
3 |
Quelques contributions à l'estimation fonctionnelle par méthodes d'ondelettesChesneau, Christophe 07 December 2006 (has links) (PDF)
Nous présentons quelques contributions à l'estimation fonctionnelle par méthodes d'ondelettes.<br />Deux axes de recherches orientent notre travail. Premier axe: étude de modèles statistiques complexes. Le point de départ de notre étude est le modèle de bruit blanc gaussien généralisé et le modèle de régression à pas aléatoires.<br />Ceux-ci font intervenir une fonction perturbant l'estimation de la fonction inconnue.<br />Notre objectif est de montrer l'influence exacte de cette fonction parasite via l'approche minimax sous le risque Lp. Dans un premier temps,<br />nous utilisons des méthodes en ondelettes pour cerner les limites de cette approche lorsque l'on se place sur des boules de Besov standards. Dans un deuxième temps, nous étudions l'alternative des boules de Besov pondérées et des méthodes en ondelettes déformées.<br />Deuxième axe: estimation adaptative. Nous étudions les performances de plusieurs estimateurs de seuillage par blocs en ondelettes sous le risque Lp.<br />Nous montrons leurs excellentes propriétés minimax et maxisets pour un large panel de modèles statistiques. En guise d'applications, nous traitons le modèle de régression à pas aléatoires et le modèle de convolution en bruit blanc gaussien.
|
4 |
Tests d'indépendance en analyse multivariée et tests de normalité dans les modèles ARMALafaye de Micheaux, Pierre January 2002 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
5 |
Tests d'indépendance en analyse multivariée et tests de normalité dans les modèles ARMALafaye De Micheaux, Pierre 16 December 2002 (has links) (PDF)
On construit un test d'ajustement de la normalité pour les innovations d'un modèle ARMA( p,q ) de tendance et moyenne connues, basé sur l'approche du test lisse dépendant des données et simple à appliquer. Une vaste étude de simulation est menée pour étudier ce test pour des tailles échantillonnales modérées. Notre approche est en général plus puissante que les tests existants. Le niveau est tenu sur la majeure partie de l'espace paramétrique. Cela est en accord avec les résultats théoriques montrant la supériorité de l'approche du test lisse dépendant des données dans des contextes similaires. Un test d'indépendance (ou d'indépendance sérielle) semi-paramétrique entre des sous-vecteurs de loi normale est proposé, mais sans supposer la normalité jointe de ces marginales. La statistique de test est une fonctionnelle de type Cramér-von Mises d'un processus défini à partir de la fonction caractéristique empirique. Ce processus est défini de façon similaire à celui de Ghoudi et al. (2001) construit à partir de la fonction de répartition empirique et utilisé pour tester l'indépendance entre des marginales univariées. La statistique de test peut être représentée comme une V-statistique. Il est convergent pour détecter toute forme de dépendance. La convergence faible du processus est établie. La distribution asymptotique des fonctionnelles de Cramér-von Mises est approchée par la méthode de Cornish-Fisher au moyen d'une formule de récurrence pour les cumulants et par le calcul numérique des valeurs propres dans la formule d'inversion. La statistique de test est comparée avec celle de Wilks pour l'hypothèse paramétrique d'indépendance dans le modèle MANOVA à un facteur avec effets aléatoires.
|
6 |
Tests d'indépendance en analyse multivariée et tests de normalité dans les modèles ARMALafaye de Micheaux, Pierre 16 December 2002 (has links) (PDF)
On construit un test d'ajustement de la normalité<br />pour les innovations d'un modèle ARMA(p,q) de tendance et moyenne<br />connues, basé sur l'approche du test lisse dépendant des<br />données et simple à appliquer. Une vaste étude de simulation<br />est menée pour étudier ce test pour des<br />tailles échantillonnales modérées. Notre approche<br />est en général plus puissante que les tests existants. Le niveau est<br />tenu sur la majeure partie de l'espace paramétrique. Cela est en accord avec les résultats<br />théoriques montrant la supériorité de l'approche du test lisse<br />dépendant des données dans des contextes similaires.<br /><br />Un test d'indépendance (ou d'indépendance sérielle) semi-paramétrique entre des sous-vecteurs de loi normale est proposé, mais sans<br />supposer la normalité jointe de ces marginales. La statistique de test<br />est une fonctionnelle de type Cramér-von Mises d'un processus défini à<br />partir de la fonction caractéristique empirique. Ce processus est<br />défini de façon similaire à celui de Ghoudi et al. (2001) construit à<br />partir de la fonction de répartition empirique et utilisé pour tester<br />l'indépendance entre des marginales univariées. La statistique de test<br />peut être représentée comme une V-statistique. Il est convergent pour<br />détecter toute forme de dépendance. La convergence faible du processus<br />est établie. La distribution asymptotique des fonctionnelles de<br />Cramér-von Mises est approchée par la méthode de Cornish-Fisher au<br />moyen d'une formule de récurrence pour les cumulants et par le<br />calcul numérique des valeurs propres dans la formule d'inversion. La<br />statistique de test est comparée avec celle de Wilks pour <br />l'hypothèse paramétrique d'indépendance dans le modèle MANOVA à<br />un facteur avec effets aléatoires.
|
7 |
Point de vue maxiset en estimation non paramétriqueAutin, Florent 07 December 2004 (has links) (PDF)
Dans le cadre d'une analyse par ondelettes, nous étudions les propriétés statistiques de diverses classes de procédures. Plus précisément, nous cherchons à déterminer les espaces maximaux (maxisets) sur lesquels ces procédures atteignent une vitesse de convergence donnée. L'approche maxiset nous permet alors de donner une explication théorique à certains phénomènes observés en pratique et non expliqués par l'approche minimax. Nous montrons en effet que les estimateurs de seuillage aléatoire sont plus performants que ceux de seuillage déterministe. Ensuite, nous prouvons que les procédures de seuillage par groupes, comme certaines procédures d'arbre (proches de la procédure de Lepski) ou de seuillage par blocs, ont de meilleures performances au sens maxiset que les procédures de seuillage individuel. Par ailleurs, si les maxisets des estimateurs Bayésiens usuels construits sur des densités à queues lourdes sont de même nature que ceux des estimateurs de seuillage dur, nous montrons qu'il en est de même pour ceux des estimateurs Bayésiens construits à partir de densités Gaussiennes à grande variance et dont les performances numériques sont très bonnes.
|
8 |
Estimation asymptotiquement exacte en norme sup de fonctions multidimensionnellesBertin, Karine 23 November 2004 (has links) (PDF)
On étudie deux modèles statistiques: le modèle de régression à pas aléatoire et le modèle de bruit blanc gaussien. Dans ces modèles, le but est d'estimer en norme sup une fonction f inconnue, à partir des observations, en supposant que f appartient à une classe de Holder. Dans le modèle de régression, pour l'estimation d'une fonction unidimensionnelle, on obtient la constante exacte et un estimateur asymptotiquement exact. Dans le modèle de bruit blanc, on s'intéresse à l'estimation sur deux classes de fonctions multidimensionnelles anisotropes dont une est une classe additive. Pour ces deux classes, on détermine la constante exacte et un estimateur asymptotiquement exact et on met en évidence leur lien avec l'"optimal recovery". La dernière partie donne des résultats d'asymptotique exacte dans un cadre adaptatif dans le modèle de bruit blanc. On détermine la constante exacte adaptative et un estimateur asymptotiquement exact adaptatif pour l'estimation sur des classes anisotropes.
|
9 |
Estimation bayésienne non paramétriqueRivoirard, Vincent 13 December 2002 (has links) (PDF)
Dans le cadre d'une analyse par ondelettes, nous nous intéressons à l'étude statistique d'une classe particulière d'espaces de Lorentz : les espaces de Besov faibles qui apparaissent naturellement dans le contexte de la théorie maxiset. Avec des hypothèses de type "bruit blanc gaussien", nous montrons, grâce à des techniques bayésiennes, que les vitesses minimax des espaces de Besov forts ou faibles sont les mêmes. Les distributions les plus défavorables que nous exhibons pour chaque espace de Besov faible sont construites à partir des lois de Pareto et diffèrent en cela de celles des espaces de Besov forts. Grâce aux simulations de ces distributions, nous construisons des représentations visuelles des "ennemis typiques". Enfin, nous exploitons ces distributions pour bâtir une procédure d'estimation minimax, de type "seuillage" appelée ParetoThresh, que nous étudions d'un point de vue pratique. Dans un deuxième temps, nous nous plaçons sous le modèle hétéroscédastique de bruit blanc gaussien et sous l'approche maxiset, nous établissons la sous-optimalité des estimateurs linéaires par rapport aux procédures adaptatives de type "seuillage". Puis, nous nous interrogeons sur la meilleure façon de modéliser le caractère "sparse" d'une suite à travers une approche bayésienne. À cet effet, nous étudions les maxisets des estimateurs bayésiens classiques - médiane, moyenne - associés à une modélisation construite sur des densités à queues lourdes. Les espaces maximaux pour ces estimateurs sont des espaces de Lorentz, et coïncident avec ceux associés aux estimateurs de type "seuillage". Nous prolongeons de manière naturelle ce résultat en obtenant une condition nécessaire et suffisante sur les paramètres du modèle pour que la loi a priori se concentre presque sûrement sur un espace de Lorentz précis.
|
Page generated in 0.0502 seconds