• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 17
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 33
  • 17
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Control Of C60-POSS Nano Particle Locaiton In DirectedSelf-Assembly of Block Copolymer Thin Films

Qian, Jiajie 09 June 2014 (has links)
No description available.
52

A Vertical C60 Transistor with a Permeable Base Electrode / Ein vertikaler C60-Transistor mit einer permeablen Basiselektrode

Fischer, Axel 26 October 2015 (has links) (PDF)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range. The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents. The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance. Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations. / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus. Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt. Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden. Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.
53

Nanostrukturierte Fullerenschichten für organische Bauelemente

Deutsch, Denny 15 August 2009 (has links) (PDF)
Die vorliegende Arbeit behandelt die Herstellung geordneter C60-Schichten, ihre elektrochemische Nanostrukturierung in wässrigen Lösungen und ionischen Flüssigkeiten und den Einsatz geordneter und nanostrukturierter Fullerenschichten in organischen Dünnschichttransistoren. Geordnete C60-Schichten wurden durch thermische Verdampfung im Hochvakuum hergestellt. Als Substratmaterial wurden HOPG (Graphit), Glimmer und einkristallines Silizium verwendet. Die größten einkristallinen Bereiche werden auf HOPG-Substraten erhalten. Die laterale Ausdehnung der C60-Kristallite parallel zu den Graphitstufen kann bis zu 50 µm erreichen, orthogonal zu den Stufen ist das Wachstum durch die Graphitstufen begrenzt. Die elektrochemische Reduktion von C60 -Schichten in wässriger Lösung ist elektrochemisch irreversibel. Die geflossene Ladung beträgt ein Vielfaches der theoretisch möglichen Menge. Durch die Reduktion tritt eine Nanostrukturierung der Schichtoberfläche ein, die Größe der gebildeten Cluster beträgt 20 nm bis 50 nm. Fullerenpolymere und hydriertes C60 sind die chemischen Hauptprodukte der elektrochemischen Nanostrukturierung in wässriger Lösung. Die Reduktion von Fullerenschichten in ionischen Flüssigkeiten ist aufgrund der geschlossenen Schichtoberfläche und des starken Potentialabfalls in der Fullerenschicht zunächst kinetisch gehemmt und setzt erst bei negativeren Potentialen im Bereich der Reduktion zum C60-Dianion ein. Die Reduktion der Fullerenschichten ist elektrochemisch irreversibel, zum Teil aber chemisch reversibel. Es konnte erstmals der Einsatz nanostrukturierter C60 -Schichten als aktives Halbleitermaterial in Feldeffekt-Transistoren gezeigt werden. Für die Verwendung nanostrukturierter Fullerenschichten in Feldeffekt-Transistoren wurde 11-(3-Thienyl-)undecyl-trichlorosilan als Haftvermittler eingesetzt. Die gezeigten Ergebnisse von C60 -Transistoren mit hoher Ladungsträgerbeweglichkeit und der erfolgreichen Verwendung nanostrukturierter Fullerenschichten in Transistorstrukturen zeigen die Möglichkeiten des C60 als aktives Halbleitermaterial auf.
54

Microdiffraction et microtomographie in situ des transformations hétérogènes du C¦« sous haute pression et haute température / In situ microdiffraction and microtomography of heterogeneous high-pressure high-temperature forms of C60

Alvarez Murga, Michelle Jenice 06 November 2012 (has links)
Le diagramme des phases du C60 continue d'être un sujet de discussion et de controverse, malgré la grande quantité de travaux expérimentaux et théoriques fait au fil des ans. Ceci est principalement dû au manque d'études in situ, a l'existence d´états désordonnés présentant des pics de diffraction très mal résolus et à la coexistence de plusieurs polytypes de faible densité. Ce manuscrit présente une étude systématique in situ des transformations hétérogènes du C60 sous haute pression et haute température dans la gamme 1-10 GPa et 300-1200 K. Afin de discriminer les poly(a)morphes de densité similaire dans des échantillons hétérogènes, nous avons utilisé une combinaison de micro-diffraction et micro-tomographie. Les échantillons ont été synthétisés dans une cellule Paris-Edimbourg et caractérisés à l'aide de diffraction des rayons X in situ en dispersion angulaire. Des images tridimensionnels à haute résolution ont été obtenus sur des échantillons trempés par la méthode de micro-tomographie de diffraction/diffusion. Cette méthode permet l'analyse 3D de l'intensité de diffusion reconstruite à partir de séries de projections 2D. Une telle analyse est non destructive et offre une grande sensibilité (0,1% en volume), une haute résolution spatiale (μm3) et peut être multimodale, fournissant des données quantitatives sur la morphologie, la densité, la composition élémentaire ou la structure des matériaux. En outre, nous décrivons le développement d´un système de micro-tomographie in situ sous haute pression et haute température en utilisant une nouvelle cellule rotative Paris-Edimbourg (RoToPEC), combinée avec le rayonnement synchrotron. La capacité à tourner complètement la chambre de l'échantillon sous charge, surmonte la contrainte d'ouverture angulaire limitée des cellules ordinaires et permet l'acquisition de projections tomographiques pour l'imagerie de plein champ ainsi que pour l'imagerie par micro-diffraction. Cette méthode innovante permet l´étude des matériaux sous conditions extrêmes de pression, température ou stress, et pourra être appliquée dans des domaines variés tels que la physique, la chimie, la science des matériaux ou la géologie. Le potentiel de cette nouvelle technique expérimentale est démontré par l'étude de la polymérisation de C60 sous haute-pression et haute température. Mots-clés: C60, diagramme de phase, diffraction, micro-tomographie, haute pression et haute température / The C60 reaction diagram continues to be a subject of discussion and controversy, despite the vast amount of experimental and theoretical work done over the years. This is mainly due the lack of in situ studies, the highly disordered-states showing poorly resolved diffraction peaks and the coexistence of several low-density polytypes. This manuscript presents a systematic in situ study of high-pressure–high-temperature forms C60 in the range of 1-10 GPa and 300-1200 K. In order to discriminate poly(a)morphs with similar densities in heterogeneous samples, we used a combination of microdiffraction and microtromography. The samples were synthesized in a Paris-Edinburgh cell and characterized using in situ angular dispersive X-ray diffraction. Three-dimensional submicron images were obtained on quenched samples using diffraction/scattering microtomography. This method provides 3D analysis of the scattering intensity reconstructed from sets of 2D microdiffraction projections. Such analysis is non-destructive and provides high sensitivity (0.1% volume), high spatial resolution (µm3) and can be multi-modal providing quantitative information on the morphology, density, elemental composition or structure of materials. Additionally, we describe the development of in situ high-pressure–high-temperature microtomography using a new rotating Paris-Edinburgh cell (RoToPEC) combined with synchrotron radiation. The ability to fully rotate the sample chamber under load, overcomes the limited angular aperture of ordinary high-pressure cells for acquiring tomographic projections in both, full-field imaging or microdiffraction modes. This innovative method enables dynamic studies of materials under extreme pressure-temperature-stress conditions, impacting areas such as physics, chemistry, materials science or geology. The potential of this new experimental technique is demonstrated on the in situ investigation of of high-pressure–high-temperature polymerization of C60 . Keywords: C60, phase diagram, diffraction, microtomography, high-pressure–high-temperature
55

Développement de transistors à effet de champ organiques et de matériaux luminescents à base de nanoclusters par impression à jet d’encre / Development of organic field effect transistors and luminescent materials based on nanoclusters by inkjet printing

Robin, Malo 19 December 2017 (has links)
L'objectif de cette thèse était de démontrer les potentialités de l'impression à jet d'encre pour le pilotage d'une HLED contenant des clusters métalliques phosphorescents dans le rouges, par des transistors organiques à effet de champs. Pour atteindre ce but, le projet a été divisé en deux parties : I) La fabrication et l'optimisation de transistors organiques de type n par photolithographie puis le transfert technologique vers l'impression à jet d'encre. II) Parallèlement au développement des transistors, je me suis attaché à la conception de matériaux hybrides luminescents pour la réalisation d'HLED. Pour la partie transistor, nous avons obtenu une meilleure compréhension des facteurs influençant l'injection de charges mais aussi la stabilité électrique pour un transistor de géométrie grille basse/contacts bas avec le fullerène C60 évaporé. Nous avons démontré que la résistance de contact est d'une part gouvernée par la morphologie du SCO au niveau des électrodes et d'autre part indépendante du travail de sortie du métal. En outre, nous avons vu que la stabilité électrique des transistors est fortement impactée par la nature du contact source et drain. L'optimisation des transistors fabriqués par photolithographie, qui a essentiellement consisté à modifier les interfaces, nous a permis de développer des transistors de type n performants avec des mobilités à effet de champ saturées allant jusqu'à 1,5 cm2/V.s pour une température maximum de procédé de 115 °C. Le transfert vers un transistor fabriqué par impression à jet d'encre a ensuite été effectué. Nous avons ensuite démontré que les morphologies de l'électrode de grille et de l'isolant, fabriqués par impression à jet d'encre, ont un impact négligeable sur les performances des transistors. Pour notre structure imprimée, l'injection de charges aux électrodes S/D est en fait le facteur clé pour la réalisation de transistors performants. Finalement, des matériaux phosphorescents rouges à base de cluster métalliques octaédrique de molybdène ont été développés. Le copolymère hybride résultant présentait un rendement quantique de photoluminescence de 51 %. La réalisation de l'HLED a ensuite été effectuée par combinaison d'une LED bleue commercial et du copolymère dopé avec des clusters octaédriques de molybdène pour des applications possibles en biologie ou dans l'éclairage. / The objective of this thesis was to demonstrate the potentialities of inkjet printing for driving an HLED containing red phosphorescent metallic clusters, with organic field effect transistors. To achieve this goal, the project was divided into two parts: I) The fabrication and optimization of n-type organic transistors by photolithography and then transfer to inkjet printing. II) Parallel to the development of transistors, I focused on designing luminescent hybrid materials for HLED realization. Concerning transistors, we obtained a better understanding of the factors influencing the charge injection but also the electrical stability for bottom gate/ bottom contact geometry transistor with evaporated C60 semiconductor. We have demonstrated that the contact resistance is on the one hand governed by the morphology of the SCO at the electrodes and on the other hand independent of the metal work function. In addition, we have observed that transistors electrical stability of is strongly impacted by the source and drain contact nature. The optimization of photolithography transistors, which essentially consisted of modifying the interfaces, allowed us to develop efficient n-type transistors with saturated field effect mobilities of up to 1.5 cm2/V.s for a maximal process temperature of 115 °C. The technological transfer to inkjet printed transistors was then performed. We then demonstrated that gate electrode and insulator morphologies deposited by inkjet printing, have a negligible impact on transistors performances. For our printed structure, charges injection at the S/D electrodes is in fact the key factor for high performance transistors realization. Finally, red phosphorescent materials based on molybdenum octahedral metal cluster have been developed. The resulting hybrid copolymer showed photoluminescence quantum yield up to 51%. The realization of the HLED was then carried out by combining a commercial blue LED and the copolymer doped with octahedral molybdenum clusters for possible applications in biology or lighting.
56

Nanostructuration et caractérisation en ultravide de dépôts de molécules sur surfaces isolantes par microscopie à force atomique en mode non-contact et sonde de Kelvin / Nanostructuration and characterization in UHV of molecules on insulating surface using non-contact atomic force microscopy and Kelvin probe force microscopy.

Hoff, Brice 08 December 2014 (has links)
Grâce à des expériences en ultra-vide avec un AFM en mode non-contact (nc-AFM) et une nano-sonde de Kelvin (KPFM), nous avons pu précisément caractériser plusieurs dépôts de molécules sur différentes surfaces isolantes, dont la surface (001) de monocristaux de NaCl dopés par des ions Cd2+, appelée la surface de Suzuki. Cette surface est nanostructurée de façon à ce que deux régions très distinctes coexistent : des régions de NaCl pures et des régions de Suzuki qui recouvrent partiellement la surface (001) du cristal. Nous montrons que la surface de Suzuki peut être utilisée comme surface nanostructurée dans le but de confiner l'adsorption de nano-objets tels que des molécules organiques ou inorganiques. Après déposition de différentes molécules pentahélicènes fonctionalisées, une large partie de celles-ci reste préférentiellement adsorbée dans les régions de Suzuki. Suite aux observations nc-AFM et KPFM un modèle sera présenté sur les mécanismes d'adsorption et désorption de ces hélicènes, accompagné d'une étude étonnante sur des ilots de molécules fullerènes C60 déposés sur plusieurs surfaces isolantes, et la manipulation de charges dans ces ilots. / Thanks to ultra high vacuum experiments using non-contact AFM and Kelvin probe force microscopy (KPFM), we have been able to characterize precisely several depositions of molecules on different surfaces, including the (001) surface of a Cd2+ doped NaCl single crystal called the Suzuki surface. This surface is nanostructured such as two different regions coexist : pure NaCl regions and Suzuki regions covering partially the (001) surface. We show that the Suzuki surface can be used as a nanotemplate in order to confine the adsorption of nano-objects such as organic or inorganic molecules. After deposition of different functionalised pentahelicenes molecules, a large part of those stay preferentially adsorbed on Suzuki regions. Following the nc-AFM and KPFM observations a model will be presented on the mechanism of adsorption and desorption of those helicenes, accompanied with a astonishing study about fullerenes C60 molecules deposed on several surfaces, and the charge manipulation in these islands.
57

A Vertical C60 Transistor with a Permeable Base Electrode

Fischer, Axel 11 September 2015 (has links)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range. The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents. The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance. Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations.:CONTENTS Publications, patents and conference contributions 9 1 Introduction 13 2 Theory 19 2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24 2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26 2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42 2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57 2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Organic transistors 65 3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76 3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79 3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85 3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87 3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88 3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95 4 Experimental 101 4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108 4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110 4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121 5 Introduction of C60 VOTs 123 5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Effect of annealing 141 6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142 6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153 6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159 6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 Working Mechanism 167 7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173 7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181 7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Optimization of VOTs 183 8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9 Self-heating in organic semiconductors 209 9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216 9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218 9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Conclusion and Outlook 227 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Appendix 233 A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234 A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236 A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236 A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239 A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241 List of Figures 245 References 290 / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus. Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt. Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden. Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.:CONTENTS Publications, patents and conference contributions 9 1 Introduction 13 2 Theory 19 2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24 2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26 2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42 2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57 2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Organic transistors 65 3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76 3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79 3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85 3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87 3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88 3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95 4 Experimental 101 4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108 4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110 4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121 5 Introduction of C60 VOTs 123 5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Effect of annealing 141 6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142 6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153 6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159 6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 Working Mechanism 167 7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173 7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181 7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Optimization of VOTs 183 8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9 Self-heating in organic semiconductors 209 9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216 9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218 9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Conclusion and Outlook 227 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Appendix 233 A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234 A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236 A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236 A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239 A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241 List of Figures 245 References 290
58

Nanostrukturierte Fullerenschichten für organische Bauelemente

Deutsch, Denny 19 March 2008 (has links)
Die vorliegende Arbeit behandelt die Herstellung geordneter C60-Schichten, ihre elektrochemische Nanostrukturierung in wässrigen Lösungen und ionischen Flüssigkeiten und den Einsatz geordneter und nanostrukturierter Fullerenschichten in organischen Dünnschichttransistoren. Geordnete C60-Schichten wurden durch thermische Verdampfung im Hochvakuum hergestellt. Als Substratmaterial wurden HOPG (Graphit), Glimmer und einkristallines Silizium verwendet. Die größten einkristallinen Bereiche werden auf HOPG-Substraten erhalten. Die laterale Ausdehnung der C60-Kristallite parallel zu den Graphitstufen kann bis zu 50 µm erreichen, orthogonal zu den Stufen ist das Wachstum durch die Graphitstufen begrenzt. Die elektrochemische Reduktion von C60 -Schichten in wässriger Lösung ist elektrochemisch irreversibel. Die geflossene Ladung beträgt ein Vielfaches der theoretisch möglichen Menge. Durch die Reduktion tritt eine Nanostrukturierung der Schichtoberfläche ein, die Größe der gebildeten Cluster beträgt 20 nm bis 50 nm. Fullerenpolymere und hydriertes C60 sind die chemischen Hauptprodukte der elektrochemischen Nanostrukturierung in wässriger Lösung. Die Reduktion von Fullerenschichten in ionischen Flüssigkeiten ist aufgrund der geschlossenen Schichtoberfläche und des starken Potentialabfalls in der Fullerenschicht zunächst kinetisch gehemmt und setzt erst bei negativeren Potentialen im Bereich der Reduktion zum C60-Dianion ein. Die Reduktion der Fullerenschichten ist elektrochemisch irreversibel, zum Teil aber chemisch reversibel. Es konnte erstmals der Einsatz nanostrukturierter C60 -Schichten als aktives Halbleitermaterial in Feldeffekt-Transistoren gezeigt werden. Für die Verwendung nanostrukturierter Fullerenschichten in Feldeffekt-Transistoren wurde 11-(3-Thienyl-)undecyl-trichlorosilan als Haftvermittler eingesetzt. Die gezeigten Ergebnisse von C60 -Transistoren mit hoher Ladungsträgerbeweglichkeit und der erfolgreichen Verwendung nanostrukturierter Fullerenschichten in Transistorstrukturen zeigen die Möglichkeiten des C60 als aktives Halbleitermaterial auf.
59

Organic Photovoltaic Optimization: A Functionalized Device Based Approach

Theibert, Dustin January 2013 (has links)
No description available.
60

DFT investigations of the donor-acceptor couple CuPc/C60

Svensson, Pamela January 2016 (has links)
The donor-acceptor couple CuPc/C60 has been the subject of recent studies in organic solar cells due to its combined abilities in light absorption (CuPc) and charge transport (C60). By better understanding the electronic and geometric nature of the system it is possible to shed light on how the molecules act under different conditions. In this study the geometric properties for three different configurations have been studied by means of Density Functional Theory (DFT). By comparing the molecular structure of pristine CuPc with the structure of CuPc in the presence of C60, a slight elongation of the bonds is observed when the fullerene is present. This is especially true for the Cu-N bonds. By further including van der Waals interactions, no change in bond lengths is observed. This, in turn, suggests that, most likely, the interaction between the two molecules is relatively weak and the C60 will not have a major influence on the electronic structure of CuPc. The N1s X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) calculations confirm these conclusions, as only very small changes in peak positions are observed when comparing pristine CuPc with CuPc/C60. / Tack vare sina egenskaper inom absorption och laddningsöverföring har CuPc och fullerenen C60 varit föremål för omfattande studier bland forskare inom organiska solceller. Genom att få större förståelse för den geometriska såväl som den elektroniska konfigurationen inom och mellan paret kan man förutse hur dessa kommer att bete sig i olika sammansättningar. I denna studie har de geometriska förutsättningarna studerats där olika konfigurationer beräknats genom täthetsfunktionalteori (DFT). Genom att mäta bindningslängderna mellan koppar, kol och de olika typer av kväve i CuPc i de olika systemen, kan det inses att bindningarna förlängs då C60 läggs till. Då van der Waals-interaktioner inkluderades observerades ingen större förändring i bindingslängderna i jämförelse med fallet utan van der Waals-interaktioner. Detta tyder på att växelverkan mellan de två molekylerna är relativt svag och att C60-fullerenen ej har någon större påverkan på elektronkonfigurationen i CuPc. Beräkningarna av N1s X-ray Photoelectron Spectroscopy (XPS) och Near Edge X-ray Absorption Fine Structure (NEXAFS) stödjer denna slutsats då endast små skiftningar i topparna observerades vid jämförelse mellan rent CuPc och CuPc/C60.

Page generated in 0.0442 seconds