• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 53
  • 42
  • 32
  • 14
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 513
  • 91
  • 71
  • 70
  • 68
  • 63
  • 53
  • 52
  • 49
  • 45
  • 44
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Polymer nanocomposite foams : fabrication, characterization, and modeling

Kim, Yongha 31 January 2013 (has links)
Polymer nanocomposite foams have attracted tremendous interests due to their multifunctional properties in addition to the inherited lightweight benefit of being foamed materials. Polymer nanocomposite foams using high performance polymer and bio-degradable polymer with carbon nanotubes were fabricated, and the effects of foam density and pore size on properties were characterized. Electrical conductivity modeling of polymer nanocomposite foams was conducted to investigate the effects of density and pore size. High performance polymer Polyetherimide (PEI) and multi-walled carbon nanotube (MWCNT) nanocomposites and their foams were fabricated using solvent-casting and solid-state foaming under different foaming conditions. Addition of MWCNTs has little effect on the storage modulus of the nanocomposites. High glass transition temperature of PEI matrix was maintained in the PEI/MWCNT nanocomposites and foams. Volume electrical conductivities of the nanocomposite foams beyond the percolation threshold were within the range of electro-dissipative materials according to the ANSI/ESD standard, which indicates that these lightweight materials could be suitable for electro-static dissipation applications with high temperature requirements. Biodegradable Polylactic acid (PLA) and MWCNT nanocomposites and their foams were fabricated using melt-blending and solid-state foaming under different foaming conditions. Addition of MWCNTs increased the storage modulus of PLA/MWCNT composites. By foaming, the glass transition temperature increased. Volume electrical conductivities of foams with MWCNT contents beyond the percolation threshold were again within the range of electro-dissipative materials according to the ANSI/ESD standard. The foams with a saturation pressure of 2 MPa and foaming temperature of 100 °C showed a weight reduction of 90% without the sacrifice of electrical conductivity. This result is promising in terms of multi-functionality and material saving. At a given CNT loading expressed as volume percent, the electrical conductivity increased significantly as porosity increased. A Monte-Carlo simulation model was developed to understand and predict the electrical conductivity of polymer/MWCNT nanocomposite foams. Two different foam morphologies were considered, designated as Case 1: volume expansion without nanotube rearrangement, and Case 2: nanotube aggregation in cell walls. Simulation results from unfoamed nanocomposites and the Case 1 model were validated with experimental data. The results were in good agreement with those from PEI/MWCNT nanocomposites and their foams, which had a similar microstructure as modeled in Case 1. Porosity effects on electrical conductivity were investigated for both Case 1 and Case 2 models. There was no porosity effect on electrical conductivity at a given volume percent CNT loading for Case 1. However, for Case 2 the electrical conductivity increased as porosity increased. Pore size effect was investigated using the Case 2 model. As pore size increased, the electrical conductivity also increased. Electrical conductivity prediction of foamed polymer nanocomposites using FEM was performed. The results obtained from FEM were compared with those from the Monte-Carlo simulation method. Feasibility of using FEM to predict the electrical conductivity of foamed polymer nanocomposites was discussed. FEM was able to predict the electrical conductivity of polymer nanocomposite foams represented by the Case 2 model with various porosities. However, it could not capture the pore size effect in the electrical conductivity prediction. The FEM simulation can be utilized to predict the electrical conductivity of Case 2 foams when the percolation threshold is determined by Monte-Carlo simulation to save the computational time. This has only been verified when the pore size is small in the range of a few micrometers. / text
202

Synthesis and characterization of interfaces between naturally derived and synthetic nanostructures for biomedical applications

Zekri, Souheil 01 June 2007 (has links)
The use of nanotechnology to develop methods for fabrication and characterization of organized hybrid nanostructures that include integrated polymeric, biological and inorganic compounds has increased exponentially during the last decade. Such bio-nano-composite materials could be used in solving current biomedical problems spanning from nanomedicine to tissue engineering and biosensing. In this dissertation, a systematic study has been carried out on the synthesis, characterization, of two interfaces between naturally derived and synthetic nanostructures. Carbon nanotubes and porous silicon represent the synthetic nanostructures that were developed for the purpose of interfacing with the naturally derived bovine type I collagen and respiratory syncytial virus DNA respectively. Firstly, the synthesis of collagen-carbon nanotubes by two different techniques: fibrillogenesis through slow wet fiber drawing (gelation process) and electrospinning has been highlighted. Characterization of the novel nanocomposite was conducted using electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nanoindentation, and Raman spectroscopy. The collagen-carbon nanotube gelation process was found to have superior nanoscale surface mechanical properties that were more conducive to higher osteoblast specific protein expression such as osteocalcin. Applications of the developed nanofibers are detailed in the fields of orthopaedics and tissue engineering. Secondly, an overview of porous silicon synthesized by hydrofluoric acid is presented. A parametric study was performed to determine the optimal pore size was carried out. The use of porous silicon as a biosensor to detect RSV virus by DNA hybridization was then provided and the importance of the interface chemistry was highlighted.
203

Molecular simulations of Pd based hydrogen sensing materials

Miao, Ling 01 June 2006 (has links)
Hydrogen sensor technology is a crucial component for safety and many other practical concerns in the hydrogen economy. To achieve a desired sensor performance, proper choice of sensing material is critical, because it directly affects the main features of a sensor, such as response time, sensitivity, and selectivity. Palladium is well-known for its ability to sorb a large amount of hydrogen. Most hydrogen sensors use Pd-based sensing materials. Since hydrogen sensing is based on surface and interfacial interactions between the sensing material and hydrogen molecules, nanomaterials, a group of low dimensional systems with large surface to volume ratio, have become the focus of extensive studies in the potential application of hydrogen sensors. Pd nanowires and Pd-coated carbon nanotubes have been successfully used in hydrogen sensors and excellent results have been achieved. Motivated by this fact, in this dissertation, we perform theoretical modeling to achieve a complete and rigorous description of molecular interactions, which leads to the understanding of molecular behavior and sensing mechanisms.To demonstrate the properties of Pd-based sensing materials, two separate modeling techniques, but with the same underlying aim, are presented in this dissertation. Molecular dynamic simulations are applied for the thermodynamic, structural and dynamic properties of Pd nanomaterials. Ab initio calculations are utilized for the study of sensing mechanism of Pd functionalized single wall carbon nanotubes. The studies reported in this dissertation show the applications of computational simulations in the area of hydrogen sensors. It is expected that this work will lead to better understanding and design of molecular sensor devices.
204

Device Fabrication and Probing of Discrete Carbon Nanostructures

Batra, Nitin M 06 May 2015 (has links)
Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization using a conventional probe station. A four-probe configuration was utilized to measure accurately the electrical resistivity of MWCNTs with similar results obtained from devices fabricated by different methods. In order to reduce the contact resistance of the beam deposited platinum electrodes, single step vacuum thermal annealing was performed. Microscopy and spectroscopy were carried out on the beam deposited electrodes to follow the structural and chemical changes occurring during the vacuum thermal annealing. For the first time, a core-shell type structure was identified on EBID Pt and IBID Pt annealed electrodes and analogous free standing nanorods previously exposed to high temperature. We believe this observation has important implications for transport properties studies of carbon materials. Apart from that, contamination of carbon nanostructure, originating from the device fabrication methods, was also studied. Finally, based on the observations of faster processing time together with higher yield and flexibility for device preparation, we investigated EBID to fabricate devices for other discrete carbon nanostructures.
205

A Deformation Induced Quantum Dot

Woodsworth, Daniel James 05 1900 (has links)
Due to their extraordinary electronic properties, Quantum Dots (QDs) are potentially very useful nanoscale devices and research tools. As their electrons are confined in all three dimensions, the energy spectra of QDs is descrete, similar to atoms and molecules. Because the gaps between these energy levels is inversely related to the size of the QD, very small QDs are desirable. Carbon nanotubes have long been touted as fundamental units of nanotechnology, due to their structural, optical and electronic properties, many of which are a result of the confinement of electrons in the trans-axial plane of the nanotube. It is known that their band gap structure is altered under deformation of their cross section. It is proposed that one way to fabricate a very small quantum dot is by confining electrons in the nanotube so that they may not freely move along its length. A structure to produce this confinement has been described elsewhere, namely the carbon nanotube cross, consisting of two carbon nanotubes, with the the one draped over the other at ninety degrees. It is thought that this structure will induce local physical deformations in the nanotube, resulting in local changes in electronic structure of the top nanotube at the junction of the cross. These band gap shifts may cause metal-semiconductor transitions, resulting in tunnel barriers that axially the confine electrons in the nanotube. This thesis investigates the possibility that the carbon nanotube cross may exhibit QD behavior at the junction of the cross, due to these local band gap shifts. A device for carbon nanotube growth, using Chemical Vapor Deposition, has been designed, and may be built using microfabrication techniques. This device consists of electrodes (for electrical measurements of the nanotubes) and catalyst regions (to initiate nanotube growth), lithographically patterned in a configuration that promotes carbon nanotube formation. Unfortunately, due to fabrication issues, this effort is a work in progress, and these devices have not yet been constructed. However, an experimental methodolgy has been developed, which provides a framework for eventually building a carbon nanotube cross, and investigating the possibility of QD behavior at the junction of the cross. This structure has also been investigated computationally. Molecular dynamics simulations were used to obtain equilibrium geometries of the carbon nanotube cross, and it was found that their are many different meta stable states, corresponding to different types of nanotube, and different physical arrangements of these nanotubes. The electronic structure of the carbon nanotube cross was calculated using the density functional theory. Band gap energies similar to experimental values were obtained. A one-to-one spatial correlation between deformation and band gap and conduction band shifts were observed in the top carbon nanotube of the nanotube cross. Small tunnel barriers, inferred from both the calculated band gap and LUMO energies, are observed, and could well be sufficient to confine electrons along the axis of the nanotube. The results described in this thesis, while not definitive, certainly indicate that a QD probably would form at the junction of a carbon nanotube cross, and that further investigation, both experimental and computational, is warranted.
206

Development of Cell Lysis Techniques in Lab on a chip

Shahini, Mehdi January 2013 (has links)
The recent breakthroughs in genomics and molecular diagnostics will not be reflected in health-care systems unless the biogenetic or other nucleic acid-based tests are transferred from the laboratory to clinical market. Developments in microfabrication techniques brought lab-on-a-chip (LOC) into being the best candidate for conducting sample preparation for such clinical devices, or point-of-care testing set-ups. Sample preparation procedure consists of several stages including cell transportation, separation, cell lysis and nucleic acid purification and detection. LOC, as a subset of Microelectromechanical systems (MEMS), refers to a tiny, compact, portable, automated and easy-to-use microchip capable of performing the sample-preparation stages together. Complexity in micro-fabrications and inconsistency of the stages oppose integration of them into one chip. Among the variety of mechanisms utilized in LOC for cell lysis, electrical methods have the highest potential to be integrated with other microchip-based mechanisms. There are, however, major limitations in electrical cell lysis methods: the difficulty and high-cost fabrication of microfluidic chips and the high voltage requirements for cell lysis. Addressing these limitations, the focus of this thesis is on realization of cell lysis microchips suitable for LOC applications. We have developed a new methodology of fabricating microfluidic chips with electrical functionality. Traditional lithography of microchannel with electrode, needed for making electro-microfluidic chips, is considerably complicated. We have combined several easy-to-implement techniques to realize electro-microchannel with laser-ablated polyimide. The current techniques for etching polyimide are by excimer lasers in bulky set-ups and with involvement of toxic gas. We present a method of ablating microfluidic channels in polyimide using a 30W CO2 laser. Although this technique has poorer resolution, this approach is more cost effective, safer and easier to handle. We have verified the performance of the fabricated electro-microfluidic chips on electroporation of mammalian cells. Electrical cell lysis mechanisms need an operational voltage that is relatively high compared to other cell manipulation techniques, especially for lysing bacteria. Microelectro-devices have dealt with this limitation mostly by reducing the inter-distance of electrodes. The technique has been realized in tiny flow-through microchips with built-in electrodes in a distance of a few micrometers which is in the scale of cell size. In addition to the low throughput of such devices, high probability of blocking cells in such tiny channels is a serious challenge. We have developed a cell lysis device featured with aligned carbon nanotube (CNT) to reduce the high voltage requirement and to improve the throughput. The vertically aligned CNT on an electrode inside a MEMS device provides highly strengthened electric field near the tip. The concept of strengthened electric field by means of CNT has been applied in field electron emission but not in cell lysis. The results show that the incorporation of CNT in lysing bacteria reduces the required operational voltage and improves throughput. This achievement is a significant progress toward integration of cell lysis in a low-voltage, high-throughput LOC. We further developed the proposed fabrication methodology of micro-electro-fluidic chips, described earlier, to perform electroporation of single mammalian cell. We have advanced the method of embedding CNT in microchannel so that on-chip fluorescent microscopy is also feasible. The results verify the enhancement of electroporation by incorporating CNT into electrical cell lysis. In addition, a novel methodology of making CNT-embedded microfluidic devices has been presented. The embedding methodology is an opening toward fabrication of a CNT-featured LOC for other applications.
207

DEVELOPMENT OF CONJUGATED COPOLYMERS FOR CARBON NANOTUBE-BASED SOLAR CELLS

KRAFT, THOMAS M 14 February 2011 (has links)
The investigation carried out in this project allowed for the development of eleven regioregular π-conjugated alternating copolymers and their implementation in organic solar cells. The eleven synthesized polymers, poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(4,7-dithien-2-yl-2,1,3-benzothiadiazole)] (CB), poly[(2,7-(9,9-dioctyl-9H-fluorene-2,7-diyl))-alt-(1,6-pyrene)] (LP), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(5,5’’’-(3,3’’’-dihexyl-2,2':5',2'':5'',2'''-quarterthiophene))] (CT), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(2,7-9H-fluoren-9-one)] (CF), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(1,6-pyrene)] (CP), poly[(2,7-(9,9-dioctyl-9H-fluorene-2,7-diyl))-alt-(4,7-dithien-2-yl-2,1,3-benzothiadiazole)] (LB), poly[(2,7-(9,9-dioctyl-9H-fluorene-2,7-diyl))-alt-(2,7-9H-fluoren-9-one)] (LF), poly[(5,5’’’-(3,3’’’-dihexyl-2,2':5',2'':5'',2'''-quarterthiophene))-alt-(2,7-9H- fluoren-9-one)] (TF), poly[(2,7-(9,9-dioctyl-9H-fluorene-2,7-diyl))-alt-(4,4'-dioctyl-2,2'-bithiophene)] (oTLT), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(4,4'-dioctyl-2,2'-bithiophene)] (oTCT), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(4,4'-dihexyl-2,2'-bithiophene)] (TCT), were investigated using theoretical methods that included semi-empirical geometry optimizations, density functional theory (DFT) energy calculations, and time-dependent density functional theory (TD-DFT) optical absorption predictions. The absorption predictions gave credence to our experimental results in which the absorption of the longer polymer chains underwent a redshift from the monomer absorption. With several of the prepared polymers, bulk-heterojunction photovoltaic cells were fabricated and their photovoltaic activity was investigated. Several of the fabricated cells exhibited photovoltaic efficiencies including polymer/PCBM composites with an aluminum back electrode (CF, CT, P3HT, and MEH-PPV), and also inverted cells with a silver back electrode (CT, P3HT, and MEH-PPV). Several polymers (CF, CT, TCT, LP, oTCT, oTLT, P3HT, and MEH-PPV) were used to solubilize single-walled carbon nanotubes (SWNTs). The solubility of the nanotubes occurred by the polymers’ ability to wrap the tubes, disrupt the bundles (ropes of tubes), and allow for the creation of a homogeneous mixture. Polymer:PCBM:SWNT mixtures were prepared and utilized as the active layer in BHJ solar cells. Some of the inverted cells (with a silver back electrode) that incorporated the nanotube composites (CT, oTCT, oTLT, P3HT, and MEH-PPV) displayed photovoltaic activity. These preliminary results illuminate the photovoltaic behavior of the polymer and provide evidence for their future use in polymer solar cells. / Thesis (Master, Chemistry) -- Queen's University, 2011-02-13 22:09:00.464
208

High-frequency performance projections and equivalent circuits for carbon-nanotube transistors

Paydavosi, Navid Unknown Date
No description available.
209

Synthesis of millimeter-scale carbon nanotube arrays and their applications on electrochemical supercapacitors

Cui, Xinwei Unknown Date
No description available.
210

Developing an In Vivo Intracellular Neuronal Recording System for Freely Behaving Small Animals

Yoon, Inho January 2013 (has links)
<p>Electrophysiological intracellular recordings from freely behaving animals can provide information and insights, which have been speculated or cannot be reached by traditional recordings from confined animals. Intracellular recordings can reveal a neuron's intrinsic properties and their communication with other neurons. Utilizing this technology in an awake and socially behaving brain can bring brain research one step further. </p><p>In this dissertation, a customized miniature electronics and microdrive assembly is introduced for intracellular recording from small behaving animals. This solution has realized in vivo intracellular recording from freely behaving zebra finches and mice. Also, a new carbon nanotube probe is presented as a surface scanning tip and a neural electrode. With the carbon nanotube probe, intracellular and extracellular neural signals were successfully recorded from mouse brains. Previously, carbon nanotubes have only been used as a coating material on a cell-culturing platform or on a metal based neural electrode. This probe is the first pure carbon nanotube neural electrode without an underlying platform or wire, and it is the first one that has achieved intracellular and extracellular recordings from vertebrate cortical neurons.</p> / Dissertation

Page generated in 0.0673 seconds