• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 499
  • 244
  • 116
  • 55
  • 33
  • 23
  • 18
  • 10
  • 8
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1270
  • 193
  • 163
  • 161
  • 141
  • 132
  • 113
  • 102
  • 102
  • 101
  • 97
  • 90
  • 89
  • 88
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Improved Equivalent Transmission Line Method for the Shielding Effectiveness of Metal Enclosures with Apertures

Lee, Wei-Kuo 03 July 2006 (has links)
Because the metal enclosure with apertures is the structure of the cavity form, FDTD method belonging to full-wave analytical algorithm isn¡¦t efficient for analyzing such case. Thereby the ETL method belonging to analytical formulation provides another way to analyze it. Although the structure which it can apply to isn¡¦t as complex as that in full-wave analytical algorithm, the computing time is shorter than FDTD. In contrast, the method can¡¦t get good agreement. Thus two improved ways are introduced in this paper. One is to make the suitable structure wider and the other is to consider the higher mode original ETL method isn¡¦t included to improve the accuracy. Further these two ways make the suitable range of the method wider and the method has good practicability.
262

二軸超塑性実験と構成式モデル化へのその適用

田中, 英一, TANAKA, Eiichi, 村上, 澄男, MURAKAMI, Sumio, 高崎, 久嗣, TAKASAKI, Hisashi, 青木, 達雄, AOKI, Tatsuo, 巻幡, 和寛, MAKIHATA, Kazuhiro 03 1900 (has links)
No description available.
263

Spiking Phenomenon in High Intensity Beam Welding

Chen, Kuo-Hsin 04 July 2000 (has links)
Spiking representing a periodic melting and solidification in the depth of fusion zone during high-intensity beam welding is experimentally and theorectically investigated in this work . A spike is a sudden increase in penetration beyond what might be called the average penetration line. Many spikes have voids in their lower portions because molten metal does not fuse to the sides of the hole, producing a condition similar to a cold shut in a casting. These defects seriously reduce the strength of the joint. Due to the significant role of specular reflection on absorption, an investigation of the beam characteristics, especially the focal location, on spiking is important. Furthermore, as the cavity base oscillates upward and downward relatively from the focal location, a central region subject to direct irradiation changes instantaneously from maximum to zero and vice versa. This leads to several hundred time difference in energy absorption and strongly periodic melting at the cavity base. Physical phenomenon of spiking is obtained by comparing between the measured and predicted data based on scale anlaysis of transport process near the cavity base and energy absorption as a function of focal location.
264

The Study of a Multi-reentrant Two-mirror Ring Laser Cavity

Chen, Ying-Hui 27 June 2001 (has links)
Diode laser pumped solid state laser is compact, and can generate high peak power laser with good output mode. It has been applied extensively in electronics, communication, and medical treatment in recent years. The purpose of this study is to develop a compact and practical ring laser system. The multi-reentrant ring laser system developed in this work composes of two spherical mirrors and a gain medium where the conventional ring laser systems have at least three mirrors to construct the laser cavity. The laser system is more compact and simple than conventional ring laser systems. It can be used for producing single frequency green and blue lasers. The laser system can also be applied in aviation, trace detection as well as compact picosecond mode-locked laser. We not only prove that the multi-reentrant laser system is feasible theoretically and experimentally, but also use the fundamental laser theory to find the relation among cavity length, number of points, number of circulation, and the distance between center of gain medium and optical axis. The exact solution we obtained is experimentally verified with good agreement. A comparison between exact solution and paraxial approximation is also performed. The beam paths observing from the top, side, and end view are analyzed for various multi-reentrant laser cavities. The stability of the cavity is numerically analyzed and experimentally verified with good agreement, too. Finally, the differences in cavity configuration between TEM01 mode and the figure-8 mode are compared in this thesis.
265

The study and application of multi-reentrant two-spherical-mirror ring lasers

Huang, Pi-Ling 23 June 2003 (has links)
A novel non-planar and multi-reentrant two-spherical-mirror ring cavity is demonstrated. It is compact and free of astigmatism compare to the commercial ring cavity systems. The multi-reentrant condition of the ring cavity is derived and the stability of the laser cavity is analyzed. The study of polarization evolution in this kind of ring cavity is also presented. Unidirectional operation is achieved by use of reciprocal and nonreciprocal polarization rotators to differentiate the round-trip loss. The multi-reentrant ring cavity has been utilized in single frequency laser and passively Q-switched laser. Single frequency laser possesses the advantages of high coherence and low noise, which can be used to the applications such as precision measurement. In the methods of single frequency generation, ring cavity configuration was shown to be the most robust one. Using this ring cavity, an IR and its intra-cavity frequency doubled green laser were demonstrated which the amplitude noise is lower than 0.3%. Passively Q-switched laser is an efficient and compact way to generate high-peak-power laser pulses because high voltages and fast driving electronics are not required. Its high power is useful for diverse applications including nonlinear optical processes, micromachining, material processing and range finders. But the major drawback of a passively Q-switched laser is its inherent large timing jitter, which is mainly originated from the photo dynamics in the cavity, environmental instabilities and spontaneous noise from the gain medium. In our study, we demonstrated the operation of a low-jitter, passively Q-switched laser by using the reentrant two-mirror unidirectional ring cavity, which generates a pulse width of 63ns, peak power of 250 W laser output. Due to the elimination of spontaneous noise and spatial hole burning effects, the timing jitter can be maintained below 3% over a wide range of pump powers with integrations of over 52,000 pulses.
266

Multi-Mode Propagation Method for 2D Bi-directional Ring Cavities

Chou, Yi-Hsien 27 June 2003 (has links)
Micro ring-cavity, like the Fabry-Perot cavity, is an optical device that resonates at certain frequencies. It is used as a phase compensator, and filter. Easily fabricated, the micro ring-cavity can be mass-produced, the ring-cavity is becoming evermore important as integrated opto-electronic technology advances. In this thesis, we begin with a novel one-dimensional theory that considers bi-directional traffic in the micro-ring cavity. By separating the device into easily manageable regions, and employing only fundamental modes in each of the sections, we obtain a closed-form formula for the transmission and reflection coefficient of this device. Under certain circumstances, when the directional coupler length is short but its coupling strength is strong, we observed a significant amount of reflection of optical energy at some frequencies. This phenomena is currently unknown to the opto-electronic industry. To further study this, we developed a more rigorous multi-mode propagation method for two-dimensional bi-directional ring cavities. The problem at hand is first being sliced into regions of multi-layered sections. Within each section, we can express the fields in terms of the underlying waveguide modes of the structure. At the interfaces of these sections, we construct coupled integral equations, which are derived from the continuity requirement of the tangential fields. We have complete formulations for both TE and TM cases, down to the coupled matrix equation for the unknown modal coefficients at each junction.
267

Design of liquid crystal cell gap measurement system

Lin, Chen-yi 11 August 2009 (has links)
This thesis use laser diode, lens, grating, and mirrors to composite the external cavity system to retrieve the thickness of the liquid crystal and its characteristics. This way is different to the traditional way of measure. It has good accuracy on the vertical resolution and the vertical resolution can reach to 0.3£gm. At the same time, it can develop the high quality of horizontal resolution. On the basis of the correlation between the cavity length and the wavelength of the semiconductor laser, the system is capable of developing high horizontal resolution of accurate liquid crystal measurements. The horizontal resolution can reach to 40£gm. Furthermore, by adding bias on liquid crystal through this system, it expanded more understandings on the influences of bias and induced electric field of the electrodes to the tilting angle of the liquid crystal.
268

Materials, design and processing of air encapsulated MEMS packaging

Fritz, Nathan Tyler 16 December 2011 (has links)
Air-gap structures are of particular interest for packaging of microelectromechanical systems (MEMS). In this work, an overcoat material is used to cover a sacrificial polymer, which protects the MEMS device during packaging. Once the overcoat is in place, the sacrificial polymer is thermally decomposed freeing the MEMS structure while the overcoat dielectric provides mechanical protection from the environment. An epoxy POSS dielectric was used as a high-selectivity etch mask for the PPC and a rigid overcoat for the structure leading to the process improvements. The packaging structures can be designed for a range of MEMS device sizes and operating environments. However, the air-cavity structures need additional rigidity to withstand chip-level packaging conditions. Metalized air cavity packages were molded under traditional lead frame molding pressures and tested for mechanical integrity. The experimental molding tests and mechanical models were used to establish processing conditions and physical designs for the cavities as a function of cavity size. A semi-hermetic package was created using an in-situ sacrificial decomposition/epoxy cure molding step for creating large cavity chip packages. Through the optimization of the air cavity, new materials and processes were tested for general microfabrication. The epoxy POSS dielectric provides a resilient, strong inorganic/organic hybrid dielectric for use in microfabrication and packaging applications. Polycarbonates can be used for low cost temporary adhesives in wafer-wafer bonding. An improved electroless deposition process for silver and copper was developed. The Sn/Pd activation was replaced by a cost efficient Sn/Ag catalyst. The process was shown to be able to deposit adherent copper on smooth POSS and silicon dioxide surfaces. Electroless copper was demonstrated on untreated silicon oxide wafers for TSV sidewall deposition.
269

Cavity-QED studies of composite semiconductor nanostructure and dielectric microsphere systems /

Fan, Xudong, January 2000 (has links)
Thesis (Ph. D.)--University of Oregon, 2000. / Includes reprints of articles previously published by the author. Typescript. Includes vita and abstract. Includes bibliographical references (leaves 184-190). Also available for download via the World Wide Web; free to University of Oregon users.
270

Dynamic behaviour of brain and surrogate materials under ballistic impact

Soltanipour Lazarjan, Milad January 2015 (has links)
In the last several decades the number of the fatalities related to criminally inflicted cranial gunshot wounds has increased (Aarabi et al.; Jena et al., 2014; Mota et al., 2003). Back-spattered bloodstain patterns are often important in investigations of cranial gunshot fatalities, particularly when there is a doubt whether the death is suicide or homicide. Back-spatter is the projection of blood and tissue back toward the firearm. However, the mechanism of creation of the backspatter is not understood well. There are several hypotheses, which describe the formation of the backspatter. However, as it is difficult to study the internal mechanics of formation of the backspatter in animal experiments as the head is opaque and sample properties vary from animal to animal. Performing ballistic experiments on human cadavers is rarely not possible for ethical reasons. An alternative is to build a realistic physical 3D model of the human head, which can be used for reconstruction of crime scenes and BPA training purposes. This requires a simulant material for each layer of the human head. In order to build a realistic model of human head, it is necessary to understand the effect of the each layer of the human head to the generation of the back-spatter. Simulant materials offer the possibility of safe, well‐controlled experiments. Suitable simulants must be biologically inert, be stable over some reasonable shelf‐life, and respond to ballistic penetration in the same way as the responding human tissues. Traditionally 10-20% (w/w) gelatine have been used as a simulant for human soft tissues in ballistic experiments. However, 10-20% of gelatine has never been validated as a brain simulant. Moreover, due to the viscoelastic nature of the brain it is not possible to find the exact mechanical properties of the brain at ballistic strain rates. Therefore, in this study several experiments were designed to obtain qualitative and quantitative data using high speed cameras to compare different concentrations of gelatine and new composite material with the bovine and ovine brains. Factors such as the form of the fragmentation, velocity of the ejected material, expansion rate, stopping distance, absorption of kinetic energy and effect of the suction as well as ejection of the air from the wound cavity and its involvement in the generation of the backspatter have been investigated. Furthermore, in this study a new composite material has been developed, which is able to create more realistic form of the fragmentation and expansion rate compared to the all different percentage of the gelatine. The results of this study suggested that none of the concentrations the gelatine used in this study were capable of recreating the form of the damage to the one observed from bovine and ovine brain. The elastic response of the brain tissue is much lower that observed in gelatine samples. None of the simulants reproduced the stopping distance or form of the damage seen in bovine brain. Suction and ejection of the air as a result of creation of the temporary cavity has a direct relation to the elasticity of the material. For example, by reducing the percentage of the gelatine the velocity of the air drawn into the cavity increases however, the reverse scenario can be seen for the ejection of the air. This study showed that elastic response of the brain tissue was not enough to eject the brain and biological materials out of the cranium. However, the intracranial pressure raises as the projectile passes through the head. This pressure has the potential of ejecting the brain and biological material backward and create back-spatter. Finally, the results of this study suggested that for each specific type of experiment, a unique simulant must be designed to meet the requirements for that particular experiment.

Page generated in 0.0301 seconds