• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 499
  • 244
  • 116
  • 55
  • 33
  • 23
  • 18
  • 10
  • 8
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1270
  • 193
  • 163
  • 161
  • 141
  • 132
  • 113
  • 102
  • 102
  • 101
  • 97
  • 90
  • 89
  • 88
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Development of a Portable Cavity Ring-Down Spectroscopic Technique for Measuring Stable Isotopes in Atmospheric Methane

Bostrom, Gregory A. 01 January 2010 (has links)
Trace gases can have a significant impact on the Earth's climate, and the analysis of changes in these gases and an understanding of how much of these changes are a result of human activity is important for understanding global climate change. Methane (CH4) is the second only to CO2 in radiative forcing over the last 200 years, and its concentration in the atmosphere has more than doubled since 1750. Sources and sinks of CH4 have characteristic isotopic effects, which shift the relative concentration of the methane isotopologues. Spectroscopic techniques for of analysis the isotopic composition of methane have been evolving since the early 1990's, and promise real-time, in-situ measurements that would provide unprecedented information on the methane atmospheric cycle. Here we present our development and results of a new optical spectroscopic isotope ratio instrument using cavity ringdown spectroscopy in the near IR region using the ν2+2ν3 overtone band. This region has limited interference from other molecules, and an advantageous juxtaposition of a 13CH4 triplet, and a single 12CH4 peak, allowing near-simultaneous measurement of both isotopologues. We present the results of two datasets showing high linearity over a wide range of isotope ratios, which achieved a precision of ±4 /. We present analysis of the data and consider the effects of temperature and molecular interference.
242

2.5 D Cavity Balancing

Jin, S., Lam, Yee Cheong 01 1900 (has links)
Cavity balancing is the process of altering the flow front within a cavity through thickness and design changes such that the desired fill pattern is achieved. The 2 dimensional (2D) cavity-balancing algorithm, developed by Lam and Seow [1] can only handle 2D geometry. This represents a major drawback as most, if not all of the practical injected parts are not 2D parts. To overcome this difficulty, the present investigation has developed a 2.5 dimensional (2.5D) cavity balancing optimization routine implemented within a 2.5 D finite elements domain. The aim of the automated cavity balancing routine is to reduce product development time and to improve product quality. This will lower the level of prerequisite expert knowledge necessary for successful mold and part design. The automated cavity balancing routine has been developed using the concept of flow paths. The hill-climbing algorithm of Lam and Seow is utilized but modified for the generation of flow paths for 2.5D parts. The algorithm has been implemented in a computer program running as an external loop to the MOLDFLOW software. Case studies are provided to demonstrate the efficiency of this routine. / Singapore-MIT Alliance (SMA)
243

Q measurements for high-Q cavities

January 1946 (has links)
by R.A. Rapuano and J. Halpern. / "June 28, 1946." / Includes bibliographical references. / Army Signal Corps Contract No. W-36-039 sc-32037.
244

Direct simulations of spherical particle motion in non-Newtonian liquids

Prashant, . 11 1900 (has links)
The present work deals with the development of a direct simulation strategy for solving the motion of spherical particles in non-Newtonian liquids. The purely viscous (non-elastic) non-Newtonian liquids are described by Bingham and thixotropy models. Validation of the strategy is performed for single phase (lid driven cavity flow) and two phase flows (sphere sedimentation). Lid driven cavity flow results illustrate the flow evolution of thixotropic liquid and subtle differences between thixotropic rheology and pseudo Bingham rheology. Single sphere sedimentation in Bingham liquid is shown to be influenced by the yield stress of the liquid. Time-dependent properties such as aging prominently affect the settling of a sphere in thixotropic liquid. The hydrodynamic interactions between two spheres are also studied at low and moderate Reynolds numbers. In thixotropic liquid, an intriguing phenomenon is observed where the separation distance between the spheres first increases and then rapidly decreases. / Chemical Engineering
245

Analysis and Comparison of Effects of an Airfoil or a Rod on Supersonic Cavity Flow.

Fowler, William Leland 01 December 2010 (has links)
The effects of an airfoil at different angles of attack and a circular cylindrical rod within the edge of the boundary layer flow at the leading edge of a cavity as a device for controlling the large pressure fluctuations (resonance tones) in the cavity were investigated. The airfoil results were compared with the rod in crossflow method positioned at the same leading edge location. The cavity used for testing corresponded to a length to depth ratio, L/D of 11.0/2.25 with a length to width ratio, L/W of 11.0/3.00 at a freestream Mach 1.84 flow. The study included measurements of dynamic pressure transducer output at 40 kHz and Frequency Spectra calculations, using Schlieren techniques for shock wave structures with velocity and vorticity fields obtained from PIV measurements. All airfoil configurations experienced flow separation to varying degrees. The negative 10 degree angle of attack configuration experienced the greatest amount of flow separation. All airfoil configurations provided varying degrees of cavity (resonant) tone suppression. Of the airfoil configurations, the negative 10 degree airfoil provided the best noise suppression with a 5 dB SPL reduction in broadband noise and a 9 dB reduction in peak amplitude for the 3rd resonant mode. Although all the airfoil configurations provided various levels of noise suppression, none of the configurations performed to the level of the rod in crossflow technique which provided an 8 dB SPL reduction in broadband noise and a 22 dB reduction in peak amplitude for the 2nd resonant mode. Indications of shear flow lofting effects could not be studied within any of the configurations tested. Lofting effect testing would have required flow field visualization of the cavity trailing edge region. Dynamic pressure measurements at a location near the cavity trailing edge did not detect the rod vortex shedding frequency, clearly. Because PIV results showed strong indication of vortex shedding, the lack of vortex shedding frequency data was attributed to the dynamic pressure transducer being located a far distance of 44 rod diameters downstream of the rod location. All airfoil test configurations showed evidence of deflections to the cavity leading edge oblique shock wave. The mechanisms of the deflection were the airfoil trailing edge shocks interacting with the cavity leading edge shock.
246

Habitat associations of cavity-nesting owls in the Sierra Nevada

Groce, Julie Elizabeth 15 May 2009 (has links)
Several species of small, cavity-nesting owls occur in the Sierra Nevada, including in areas impacted by human activities. The owls typically use standing dead trees (snags) for nest sites. Although descriptive studies exist regarding habitats associations around nest and roost sites, few studies have examined habitat associations at larger spatial scales or relative to certain snag characteristics (e.g., density, decay class). To improve our understanding of the habitat associations of these owls, I compared habitat characteristics at 2 spatial scales around areas of owl detection and non-detection. I also examined distances between conspecifics and heterospecifics to determine if clustering of conspecifics or avoidance of predators occurred. I conducted owl broadcast surveys and snag sampling during the spring and summer of 2006 and 2007 in the Lake Tahoe Basin of central Sierra Nevada. I measured additional habitat variables (e.g., vegetation cover, distance to roadways) from pre-existing geographical information system layers. I used stepwise logistic regression to ascertain which variables were influential in predicting owl occurrence. The northern saw-whet owl (Aegolius acadicus) was the only species detected in sufficient numbers for statistical analysis, with a detection probability of 0.25. I detected saw-whets in a wide range of conditions and it appeared that few factors influenced their distribution in the basin. Areas dominated by white fir, however, were correlated with the absence of saw-whets at both the macrohabitat and microhabitat scales. White fir-dominated areas tend to occur on the west side of the basin and it is possible white fir was acting as a proxy for other factors not measured in this study, such as microclimate conditions or prey availability. I was also more likely to find a saw-whet within 1000 m of another saw-whet than within 1000 m of a non-use point, indicating clustering of conspecifics in the basin. While it appears saw-whet needs are being met in the basin, restoration projects are ongoing to decrease both the number of snags and relative abundance of white fir. Continued monitoring of the species is essential to understand potential effects of restoration activities. Suggestions are provided for appropriate timing and effort of future surveys.
247

Gas-filled, flat plate solar collectors

Vestlund, Johan January 2012 (has links)
This work treats the thermal and mechanical performances of gas-filled, flat plate solar collectors in order to achieve a better performance than that of air filled collectors. The gases examined are argon, krypton and xenon which all have lower thermal conductivity than air. The absorber is formed as a tray connected to the glass. The pressure of the gas inside is near to the ambient and since the gas volume will vary as the temperature changes, there are potential risks for fatigue in the material. One heat transfer model and one mechanical model were built. The mechanical model gave stresses and information on the movements. The factors of safety were calculated from the stresses, and the movements were used as input for the heat transfer model where the thermal performance was calculated. It is shown that gas-filled, flat plate solar collectors can be designed to achieve good thermal performance at a competitive cost. The best yield is achieved with a xenon gas filling together with a normal thick absorber, where normal thick means a 0.25 mm copper absorber. However, a great deal of energy is needed to produce the xenon gas, and if this aspect is taken into account, the krypton filling is better. Good thermal performance can also be achieved using less material; a collector with a 0.1 mm thick copper absorber and the third best gas, which is argon, still gives a better operating performance than a common, commercially produced, air filled collector with a 0.25 mm absorber. When manufacturing gas-filled flat plate solar collectors, one way of decreasing the total material costs significantly, is by changing absorber material from copper to aluminium. Best yield per monetary outlay is given by a thin (0.3 mm) alu-minium absorber with an argon filling. A high factor of safety is achieved with thin absorbers, large absorber areas, rectangular constructions with long tubes and short distances between glass and absorber. The latter will also give a thin layer of gas which gives good thermal performance. The only doubtii ful construction is an argon filled collector with a normal thick (> 0.50 mm) aluminium absorber. In general, an assessment of the stresses for the proposed construction together with appropriate tests are recommended before manufacturing, since it is hard to predict the factor of safety; if one part is reinforced, some other parts can experience more stress and the factor of safety actually drops.
248

Design and Fabrication of Straight and Curve Optical Waveguides and Ring Cavity Wavelength Filter

Lin, Cheng-Nan 30 July 2007 (has links)
The goal of the thesis is to fabricate the integrated asymmetric Mach-Zehnder Interferometer and optical waveguide ring resonator with simple fabrication process. 1.41£gm and 1.49£gm symmetric quantum well InGaAlAs epitaxial wafer is used to fabricate the devices. In the asymmetric Mach-Zehnder Interferometer , we design asymmetric straight waveguides with difference optical path differences £GL=480£gm, 970£gm, and 1900£gm. And asymmetric bend waveguides with curvature radius differences £GR=260£gm, 200£gm, 160£gm, and 100£gm. By this design, we can observe the interference variation of output light. In optical waveguide ring resonator design, we reduce the length of original K=0.15 Multi-Mode Interference (MMI) by stepped-width waveguide. By three-stepped width waveguide MMI design, it can be reduced 33.2% length. We obtain different transmission spectrum by adjusting the splitting ratio of MMI couplers (K=0.85, 0.5, and 0.15) and cascading doudle rings. We use a series of two ring resonators by MMI (K0=0.5,K1=0.15,K2=0.5) to get the FSR=50GHz. In fabrication process, we combined dry etching method with RIE-ICP and wet etching to get smooth sidewall and highly vertical waveguide. In measure , we get the FSR= 41.25 GHZ in throughput port in double ring filters . No signal in drop port was obserred due to material absorption, bending loss, and waveguide loss.
249

Experimental Study of the Thermal-Hydraulic Phenomena in the Reactor Cavity Cooling System and Analysis of the Effects of Graphite Dispersion

Vaghetto, Rodolfo 2011 May 1900 (has links)
An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal hydraulic phenomena in a Reactor Cavity Cooling System (RCCS). The small scale RCCS experimental facility (16.5cm x 16.5cm x 30.4cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it in the environment by mixing with cold water in a large tank. PIV technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel and pipes walls and air. 10g of a fine graphite powder (particle size average 2 [mu]m) were injected into the cavity through a spraying nozzle placed at the bottom of the vessel. Temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces which was related to an increase in their emissivity. The results contribute to the understanding of the RCCS capability in case of an accident scenario.
250

An Experimental Examination of a Progressing Cavity Pump Operating at Very High Gas Volume Fractions

Glier, Michael W. 2011 May 1900 (has links)
The progressing cavity pump is a type of positive displacement pump that is capable of moving nearly any fluid. This type of pump transports fluids in a series of discrete cavities formed by the helical geometries of its rigid rotor and elastomeric stator. With appropriate materials for the rotor and stator, this pump can move combinations of liquids, suspended solids, and gasses equally well. Because of its versatility, the progressing cavity pump is widely used in the oil industry to transport mixtures of oil, water, and sediment; this investigation was prompted by a desire to extend the use of progressing cavity pumps to wet gas pumping applications. One of the progressing cavity pump's limitations is that the friction between the rotor and stator can generate enough heat to damage the rotor if the pump is not lubricated and cooled by the process fluid. Conventional wisdom dictates that this type of pump will overheat if it pumps only gas, with no liquid in the process fluid. If a progressing cavity pump is used to boost the output from a wet gas well, it could potentially be damaged if the well's output is too dry for an extended period of time. This project seeks to determine how a progressing cavity pump behaves when operating at gas volume fractions between 0.90 and 0.98. A progressing cavity pump manufactured by seepex, model no. BN 130-12, is tested at half and full speed using air-water mixtures with gas volume fractions of 0.90, 0.92, 0.94, 0.96, and 0.98. The pump's inlet and outlet conditions are controlled to produce suction pressures of 15, 30, and 45 psi and outlet pressures 0, 30, 60, 90, 120, and 150 psi higher than the inlet pressure. A series of thermocouples, pressure transducers, and turbine flow meters measures the pump's inlet and outlet conditions, the flow rates of water and air entering the pump, and pressures and temperatures at four positions within the pump's stator. Over all test conditions, the maximum recorded temperature of the pump stator did not exceed the maximum safe rubber temperature specified by the manufacturer. The pump’s flow rate is independent of both the fluid's gas volume fraction and the pressure difference across the pump, but it increases slightly with the pump's suction pressure. The pump's mechanical load, however, is dependent only on the pressure difference across the pump and increases linearly with that parameter. Pressure measurements within the stator demonstrated that the leakage between the pump's cavities increases with the fluids gas volume fraction, indicating that liquid inside the pump improves its sealing capability. However, those same measurements failed to detect any appreciable leakage between the two pressure taps nearest the pump's inlet. This last observation suggests that the pump could be shortened by as much as 25 percent without losing any performance in the range of tested conditions; shortening the pump should increase its efficiency by decreasing its frictional mechanical load.

Page generated in 0.0276 seconds