• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 16
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 1
  • Tagged with
  • 78
  • 78
  • 78
  • 78
  • 23
  • 19
  • 19
  • 18
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

CD4⁺ and CD8⁺ naïve T-cell homeostasis in primary progressive multiple sclerosis

Hackenbroch, Jessica. January 2007 (has links)
Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. The etiology of MS is unknown but many researchers believe that it is autoimmune mediated. This study investigated naive CD4+ and naive CD8+ T-cell homeostasis in patients with Primary Progressive Multiple Sclerosis and Relapsing Remitting Multiple Sclerosis. The naive T-cell compartment involves a balance between thymic production of naive T-cells, homeostatic proliferation and the delivery of death and survival signals. Naive T-cell production was quantified by measuring signal joint T-cell receptor excision circles (sj-TRECs); episomal byproducts formed during V(D)J T-cell receptor rearrangement. / Homeostatic proliferation was quantified by flow cytometry analysis of % expression of CD31 and Ki-67. CD31 is a marker found on CD4+ recent thymic emigrants (RTE) but not on naive T-cells that have undergone homeostatic proliferation. CD31 can be used as a marker of the proliferation history of naive CD4+ T-cells. Ki-67 is a nuclear and nucleolar antigen found in actively cycling cells. It can be used as a marker of cell proliferation at the moment of isolation. Cell survival was measured by quantifying plasma IL-7 levels and by measuring Bcl-2 expressions. IL-7 plays an important role in maintaining and restoring peripheral naive T-cell homeostasis. It stimulates naive T-cell proliferation and prevents the reduction of Bcl-2, an antiapoptotic protein. / In this study, PPMS patients had significantly reduced naive CD4 + T-cell sj-TRECs compared to healthy controls (p = 0.0007) and compared to RRMS patients (p = 0.0010). RRMS patients had fewer sj-TRECs than healthy controls but this difference was not significant (p = 0.4652). Similarly, in PPMS, naive CD4+ T-cells had significantly lower CD31 expression than healthy controls (p = 0.0017) and RRMS patients (p = 0.0032). This finding indicates increased homeostatic proliferation in naive CD4 + T-cells in PPMS, most probably a response to decreased thymic export as marked by the decreased naive CD4+ T-cell sj-TRECs. % CD31 expression in naive CD4+ T-cells did not differ significantly in RRMS compared to healthy controls (p = 0.7455) which is consistent with their naive CD4+ sj-TREC levels. / Naive CD8+ T-cell sj-TRECs were significantly reduced in PPMS patients compared to healthy controls (p = 0.0212) but not compared to RRMS patients (p = 0.2379). RRMS patients had fewer naive CD8 + T-cell sj-TRECs compared to healthy controls but this difference was not significant (p = 0.1517). PPMS patients expressed increased Bcl-2 levels in their naive CD8+ T-cells. This finding indicates upregulation of survival signals, most probably a consequence of reduced thymic export of naive CD8+ T-cells. / The data from this study indicate that PPMS is different from RRMS in their naive CD4+ T-cell sj-TRECs and naive CD4 + T-cell % CD31 expression but is similar to RRMS in their naive CD8+ T-cell sj-TRECs. This study concludes, therefore, that both PPMS and RRMS patients have altered naive T-cell homeostasis.
42

Long term non progressors : clues for defining immune correlates of protection from HIV disease progression

Peretz, Yoav. January 2007 (has links)
Throughout history, human populations have continuously been challenged by new and emerging infectious diseases. For the past 26 years, sub-Saharan Africa and other countries around the world have been dealing with a pandemic caused by a relatively new pathogen called the human immunodeficiency virus (HIV). Although antiretroviral (ARV) therapies effectively reduce morbidity and mortality rates, the long term use in those who have access to treatment inevitably leads to drug-related toxicity and resistance. Even with a strong commitment from governments to expand and finance prevention and treatment programs, transmission rates continue to outpace the benefits of these efforts. Therefore to effectively eradicate the disease, research is focusing on the design of protective and therapeutic vaccines. The first major step in designing these alternative therapies is to define correlates of immune protection. / The research presented in this thesis focuses on characterizing the quantitative and qualitative features of T cell immune responses in individuals who spontaneously control viral replication and exhibit a benign course of disease while remaining off ARV therapy. A comprehensive analysis of HIV-specific IFN-gamma secreting immune responses revealed that neither the breadth nor the magnitude of responses directed against the entire HIV proteome accurately predicts the viral load or rate of CD4 decline. Subsequent analyses showed that the preferential targeting of Gag was associated with reduced rates of CD4 decline and was later confirmed in a cohort of individuals in primary infection whereby the relative breadth and magnitude of Gag p24 was inversely correlated with viral load set point. / The maintenance of polyfunctional immune responses in HIV-infected subjects with a benign course of disease prompted us to develop a method that could comprehensively assess the breadth, magnitude and specificity of three functionally distinct subsets of HIV-specific lymphocytes (single IFN-gamma, single IL-2 and dual IFN-gamma/IL-2 secretors). Survey of immune responses in chronically infected individuals revealed that only the breadth and magnitude of dual IFN-gamma/IL-2 secreting lymphocytes correlated with reduced viral loads and increased CD4 counts suggesting that secretion of IFN-gamma alone was a poor correlate of protection. We also showed that the contribution of polyfunctional lymphocytes to the total response was greater for epitopes restricted by major histocompatibility complex (MHC) class I alleles associated with slow disease progression compared to those restricted by alleles associated with rapid or neutral rates of HIV disease progression. / Taken together, this work supports the view that immune monitoring of infected and vaccinated individuals should include methodologies capable of detecting both IFN-gamma and IL-2 secretion from responding T lymphocytes. The studies presented here have furthered our understanding of what constitutes protection from disease progression emphasizing that both specificity and polyfunctionality are features of effective control of viral replication.
43

Defining how polymorphisms at the SLAM family locus affect NK and T cell function

Mooney, Jill Marie. January 2006 (has links) (PDF)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2006. / Not embargoed. Vita. Bibliography: 181-228.
44

Coreceptor and costimulatory signals organize proteins within the immunological synapse and augment proximal T cell signaling events /

Delli, Joe. January 2006 (has links)
Thesis (Ph.D. in Immunology) -- University of Colorado, 2006. / Typescript. Includes bibliographical references (leaves 277-285). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
45

T Cell Immunity and HIV-1 Replication in Vertically-Infected Infants and Children: A Dissertation

Scott, Zachary Aaron 05 May 2003 (has links)
Virus-specific cellular immune responses have been shown to be important in the control of viral replication in several animal and human virus models. Cells of both the CD8+ and CD4+T cell lineages have been shown to play protective roles during viral infections by exerting effector functions that can kill infected host cells or inhibit the production and spread of infectious virions. The continued spread of HIV-1 infection throughout the world, as well as the lack of a prophylactic HIV-1 vaccine have generated much interest in HIV-specific cellular immune responses. Recent technical advances have yielded a tremendous increase in our understanding of HIV-1-specific immunity, as well as HIV-1 replication dynamics and host cell factors that shape the course of acute and chronic infection. Unfortunately, due to small sample volumes and technological limitations, the study of HIV-1-specific T cell immunity in infants and children has been difficult. An improved understanding of the timing, specificity, and intensity of pediatric HIV-specific T cell responses would contribute to the development of a HIV-1 vaccine for use in regions of the developing world without access to antiretroviral therapeutics. In the small number of published studies investigating pediatric HIV-specific immunity, T cell responses were uncommonly detected in infants. It remains unclear, however, whether the lack of HIV-specific T cells is an accurate reflection of the in vivoimmune state in vertically-infected infants, or rather is a consequence of reagents and assays ill-suited to the detection of low-level and/or diverse T cell responses in pediatric subjects. In the present dissertation, several methodologies were used to investigate HIV-specific T cell responses in vertically-infected infants and children. HIV-specific CD8+ T cell responses were infrequently detected in a cohort of young infants, but are commonly detected in older infants and children. Interestingly, CMV-specific CD8+ T cell responses were detected in several young infants that lacked HIV-specific responses, suggesting a specific defect in the ability of some infants to generate HIV-specific CD8+ T cell responses. Further experiments characterizing detectable HIV-1-specific CD8+ T cell responses found that the HIV-1 accessory proteins may be important targets of the immune response during early vertical infection. The role of HLA class I genotype and viral sequence are also explored in a pair of vertically-infected twins with discordant CD8+T cell responses. Finally, viral isolates from an infant with a marked shift in gag-specific epitope usage during infancy are analyzed for the presence of escape mutations. Gag-specific CD4+ T cell responses were commonly detected in a large cohort of vertically-infected children. A linear relationship between HIV-1 replication and the presence and intensity of HIV-specific CD4+ T cell responses was found, but ongoing HIV-1 replication appeared to blunt CD4+T cell proliferation. The data presented in this dissertation describe pediatric T cell immune responses and how they relate to HIV-1 replication. This information may be useful to the design of a prophylactic or therapeutic HIV-1 vaccine for vertically-infected infants and children.
46

The Role of Itk in T Cell Development: A Dissertation

Lucas, Julie Ann 14 January 2005 (has links)
Itk is a member of the Tec family of non-receptor tyrosine kinases. It is expressed in T cells, NK cells, and mast cells. The purpose of this study was to determine the role of Itk in T cell development. Previous work from our lab and others has demonstrated that Itk is involved in signaling downstream of the T cell receptor and initial analysis of Itk-deficient mice revealed that these mice had some defects in T cell development. There are two stages of T cell development, the pre-T cell stage and the CD4+ CD8+ double positive stage, at which signals downstream of the T cell receptor are important. At the CD4+ CD8+ double positive stage, these signals direct two concurrent, but distinct processes known as repertoire selection and CD4/CD8 lineage commitment/differentiation. I show that there are only slight defects in development at the pre-T cell stage, presumably due to reduced TCR signaling. However these results clearly demonstrate that Itk is not essential at this stage of development. In contrast, repertoire selection, in particular positive selection, is significantly affected by the absence of Itk. Similarly, I show that Itk plays a role in lineage differentiation, although commitment to the appropriate lineage occurs normally in the absence of Itk.
47

Macrophages Directly Prime Naïve CD8+ T Cells: a Dissertation

Pozzi, Lu-Ann M. 24 September 2004 (has links)
Professional antigen presenting cells (APCs) represent an important link between the innate and adaptive immune system. Macrophages (MΦs) and dendritic cells (DCs) serve as sentinels in the periphery collecting samples from their environment and processing this information. These cells then present antigenic fragments to T cells in the context of self-MHC molecules. Although a clear role for both of these APCs in the stimulation of already activated or memory T cells has been established, the ability of MΦs to activate naive T cells is still unknown. In this thesis the ability of bone marrow-derived MΦs and DCs to prime naive CD8+ and CD4+ T cells was investigated. Using adoptively transferred transgenic CFSE-Iabeled P-14 T cells, specific for gp33 from lymphocytic choriomeningitis virus in the context of Db, we were able to demonstrate the ability of both MΦs and DCs to induce naive CD8+ T cells proliferation. Once primed by MΦs these T cells gained effector function as shown by interferon- γ (IFN-γ) production and in vivo cytolysis. In addition, immunization of wild type animals with gp33-pulsed MΦs, as well as DCs, led to greater than a 95% reduction in lymphocytic choriomeningitis virus titers. To rule out the role of cross-presentation in the observed priming, two models were used. In the first model, lethally irradiated F1 bxs chimeras reconstituted with either H-2s or H-2b bone marrow were used as host for the adoptive transfer experiments. Since the gp33 peptide binds to Db, the H-2s reconstituted animals should be unable to cross-present the peptide to the P-14 T cells. Using this model, we were able to clearly demonstrate the ability of MΦs to activate naive P-14 T cells to undergo division. Additional experiments, demonstrated that these MΦ primed T cells went on to develop into effector cells. Finally, the ability of the MΦ primed T cells to develop into functional memory cells was demonstrated. To confirm the chimera results, these experiments were repeated using β2 microglobulin deficient animals (whose cells don't express MHC I) as host in adoptive experiments. MΦs were able to stimulate the naive P-14 T cells to divide and gain effector function as demonstrated by the ability to produce IFN-γ. In contrast to the CD8 system, MΦ were poor stimulators of D011.10 CD4+ T cell proliferation. Additionally, D011.10 T cells stimulated by DCs were able to produce interleukin-2 (IL-2), IL-4, tumor necrosis factor and granulocyte-macrophage colony stimulating factor where as MΦ stimulated D011.10 T cells were only able to produce IL-2. In conclusion this body of work clearly demonstrates the in vivo ability of MΦ to stimulate CD8+ T cell proliferation, effector function, as well as the formation of functional CD8+ T cell memory. Whether or not the nature of the memory pools stimulated by the two APCs is exactly the same is still unknown and needs further investigation. The ability of APCs other than DCs to stimulate functional protective memory needs to be considered in the quest to design vaccines that offer broad-spectrum protection.
48

The Role of CD40 in Naïve and Memory CD8+ T Cell Responses: a Dissertation

Hernandez, Maria Genevieve H. 16 May 2007 (has links)
Stimulation of CD40 on APCs through CD40L expressed on helper CD4+ T cells activates and “licenses” the APCs to prime CD8+ T cell responses. While other stimuli, such as TLR agonists, can also activate APCs, it is unclear to what extent they can replace the signals provided by CD40-CD40L interactions. In this study, we used an adoptive transfer system to re-examine the role of CD40 in the priming of naïve CD8+ T cells. We find an approximately 50% reduction in expansion and cytokine production of TCR-transgenic T cells in the absence of CD40 on all APCs, and on dendritic cells in particular. Moreover, CD40-deficient and CD40L-deficient mice fail to develop endogenous CTL responses after immunization and are not protected from a tumor challenge. Surprisingly, the role for CD40 and CD40L are observed even in the absence of CD4+ T cells; in this situation, the CD8+T cell itself provides CD40L. Furthermore, we show that although TLR stimulation improves T cell responses, it cannot fully substitute for CD40. We also investigated whether CD40-CD40L interactions are involved in the generation, maintenance, and function of memory CD8+ T cells. Using a virus infection system as well as a dendritic cell immunization system, we show that the presence of CD40 on DCs and other host APCs influences the survival of activated effector cells and directly affects the number of memory CD8+ T cells that are formed. In addition, memory CD8+ T cell persistence is slightly impaired in the absence of CD40. However, CD40 is not required for reactivation of memory CD8+ T cells. It seems that CD40 signals during priming also contribute to memory CD8+ T cell programming but this function can be independent of CD4+T cells, similar to what we showed for primary responses. Altogether, these results reveal a direct and unique role for CD40L on CD8+ T cells interacting with CD40 on APCs that affects the magnitude and quality of primary as well as memory CD8+ T cell responses.
49

Cross-Reactive Memory CD4<sup>+</sup> and CD8<sup>+</sup> T Cells Alter the Immune Response to Heterologous Secondary Dengue Virus Infections in Mice: A Dissertation

Beaumier, Coreen Michele 08 February 2008 (has links)
Dengue virus (DENV) infects 50-100 million people worldwide every year and is the causative agent of dengue fever (DF) and the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There are four genetically and immunologically distinct DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Evidence suggests that an increased risk for DHF/DSS during secondary infection with a heterologous DENV serotype is due to an immunopathological response mediated by serotype-cross-reactive memory T cells from the primary infection. Furthermore, epidemiological studies have shown that the sequence of infection with different DENV serotypes affects disease severity. Though much has been learned from human studies, there exist uncontrollable variables that are intrinsic in this system such as genetic factors and unknown infection histories. These factors can skew experimental results, making interpretations difficult. Therefore, a murine model to study the immunologic aspects of sequential dengue infections would be an asset to the field of dengue research. To examine the effect of sequential infection with different DENV serotypes on the CD8+ T cell response, we immunized Balb/c mice with a primary DENV infection on day 0 and subsequently challenged with a heterologous secondary DENV infection on day 28. We tested all possible sequences of infection with the four serotypes. We analyzed the T cell response to two previously defined epitopes on the DENV E (Ld-restricted) and NS3 (Kd-restricted) proteins. Using ELISPOT and intracellular cytokine staining, we measured the frequency of T cells secreting IFNγ and TNFα in response to stimulation with these epitopes during three phases: acute primary, acute secondary, and the memory phase after primary infection. We found that the T cell response in heterologous secondary infections was higher in magnitude than the response in acute primary infection or during the memory phase. We also found that the hierarchy of epitope specific responses, as measured by IFNγ secretion, was influenced by the sequence of infections. The adoptive transfer of immune serum or immune splenocytes suggested that memory T cells from the primary infection responded to antigens from the secondary infection. In vitroexperiments with T cell lines generated from mice with primary and secondary DENV infections suggested the preferential expansion of crossreactive memory T cells. In testing all of the different possible sequences of infection, we observed that two different sequences of infection (e.g., DENV-2 followed by DENV-1 versus DENV-2 followed by DENV-3) resulted in differential CD8+ T cell responses to the NS3 peptide even though both secondary infection serotypes contain the identical peptide sequence. To investigate this phenomenon, we examined the role of CD4+ T cell help on the memory CD8+ T cell response. We found that CD4+ T cell cytokine responses differ depending on the sequence of infection. In addition, it was also shown that crossreactivities of the CD4+ T cell response are also sequence-dependent. Moreover, denguespecific memory CD4+ T cells can augment the secondary CD8+ T cell response. Taken together, we demonstrated that this serotype sequence-dependent phenomenon is the result of differential help provided by cross-reactive memory CD4+T cells. The findings in this novel mouse model support the hypothesis that both CD4+ and CD8+ serotype-cross-reactive memory T cells from a primary dengue virus infection alter the immune response during a heterologous secondary dengue virus infection. These data further elucidate potential mechanisms whereby the specific sequence of infection with different dengue virus serotypes influences disease outcomes in humans.
50

Imunogenicidade de vacinas de DNA codificando peptídeos conservados e promíscuos do HIV-1,  em camundongos BALB/c / Immunogenicity of DNA vaccines encoding conserved and promiscuous HIV-1 peptides, in BALB/c mice

Rafael Ribeiro Almeida 10 June 2011 (has links)
A pandemia de AIDS é um dos principais problemas de saúde pública no mundo e demanda o desenvolvimento de uma vacina eficaz. Uma abordagem vacinal ideal, baseada em resposta celular contra o HIV-1, deveria induzir uma resposta imune mediada tanto por células T CD4+ quanto CD8+. A diversidade genética do HIV-1 é uma grande preocupação para o desenvolvimento de uma vacina e sequências consenso têm sido utilizadas a fim de contornar a barreira imposta por essa diversidade. A escolha apropriada dos antígenos a comporem as construções vacinas também é relevante, visto que proteínas como Gag e Vif têm se mostrado bastante imunogênicas, enquanto alguns trabalhos têm demonstrado que Env possui características imunossupressoras e que respostas celulares contra esse antígeno podem ser danosas aos indivíduos vacinados. Nosso grupo demonstrou que uma vacina de DNA (HIVBr18) codificando 18 peptídeos para linfócitos T CD4+, promíscuos (capazes de se ligarem a múltiplas moléculas HLA-DR) e conservados na sequência consenso do subtipo B do HIV-1 foi capaz de induzir uma resposta celular ampla, polifuncional e de longa duração em camundongos BALB/c e transgênicos para moléculas HLA. Neste trabalho identificamos 34 peptídeos potencialmente reconhecidos por linfócitos T CD4+, promíscuos e conservados na sequência consenso dos consensos do grupo M do HIV-1. Uma vacina de DNA (HIVBr27) codificando 27 dos 34 peptídeos (exceto os 7 peptídeos de Env identificados) induziu uma resposta mais ampla e de maior magnitude que a vacina HIVBr18 em camundongos BALB/c. Além disso, a vacina HIVBr27 induziu maior frequência de linfócitos T CD4+ e CD8+ polifuncionais, capazes de proliferar e produzir as citocinas IFN-gama e TNF-alfa. Desenvolvemos também uma vacina de DNA (HIVenv7) codificando os 7 peptídeos de Env do HIV-1 identificados. A co-imunização de HIVenv7+HIVBr27 reduziu a amplitude da resposta celular contra peptídeos codificados pela vacina HIVBr27. Além disso, a co-imunização reduziu a magnitude da resposta e a frequência de linfócitos T CD4+ e CD8+ polifuncionais contra o pool de 27 peptídeos codificados por essa vacina. A vacina HIVBr27, desenhada para induzir uma resposta de linfócitos T CD4+ ampla e intensa contra peptídeos promíscuos e conservados da sequência consenso dos consensos do grupo M do HIV-1, é mais imunogênica e mais completa que a vacina HIVBr18, tendo potencial de conferir, em grande cobertura populacional, imunidade contra os diversos subtipos circulantes do vírus. O fenômeno observado na co-imunização com HIVenv7 sugere que a inclusão do envelope em imunógenos contra o HIV-1 possa ser prejudicial. Por outro lado, isto faz desse plasmídeo um alvo promissor para terapias imunológicas que visem indução de imunossupressão / The AIDS pandemic is a worldwide major public health problem and requires the development of an effective vaccine. An ideal vaccine approach based on cellular immune responses against HIV-1 should induce an immune response mediated by both CD4+ and CD8+ T cells. HIV-1 genetic diversity is a major concern for developing a vaccine and consensus sequences have been used to circumvent the barrier posed by this diversity. The appropriate choice of antigens to compose the vaccines is also relevant, since proteins such as Gag and Vif have been shown to be immunogenic, while some studies have shown that Env has immunosuppressive characteristics and cellular responses against this antigen can be harmful to vaccinated individuals. Our group has demonstrated that a DNA vaccine (HIVBr18) encoding promiscuous multiple HLA-DR binding, conserved B-subtype HIV-1 CD4+ T cell epitopes was able to induce a broad, polyfunctional and long lasting T cell response in BALB/c and HLA transgenic mice. In this work we identified 34 promiscuous and conserved sequences within the group M HIV-1 consensus of the consensus sequence, potentially recognized by CD4+ T cells. A DNA vaccine (HIVBr27) encoding 27 of the 34 peptides (except the 7 Env identified peptides) induced a broader and higher magnitude T cell response than HIVBr18 vaccine in BALB/c mice. Moreover, the vaccine HIVBr27 induced a higher frequency of polyfunctional CD4+ and CD8+ T cells, able to proliferate and produce the cytokines IFN-gama and TNF-alfa. We also developed a DNA vaccine (HIVenv7) encoding the 7 HIV-1 Env identified peptides. Co-immunization with HIVenv7+HIVBr27 reduced the breadth of the cellular immune response against the HIVBr27 encoded peptides. Besides, co-imunization reduced the magnitude of the response and the frequency of polyfunctional CD4+ and CD8+ T cells against the pool of 27 peptides encoded by this vaccine. The HIVBr27 vaccine, designed to induce a broad and intense CD4+ T cell response against promiscuous and conserved peptides within the group M HIV-1 consensus of the consensus sequence, is more immunogenic and more complete than the vaccine HIVBr18, having the potential to provide, with wide population coverage, immunity against various circulating subtypes of the virus. The phenomenon observed in the co-immunization with HIVenv7 suggests that the inclusion of the envelope in immunogens against HIV-1 may be harmful. On the other hand, these results suggest that HIVenv7 is a promising target for immune therapies aimed at inducing immunosuppression

Page generated in 0.104 seconds