• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 32
  • 31
  • 30
  • 22
  • 15
  • 10
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 390
  • 64
  • 55
  • 50
  • 46
  • 45
  • 44
  • 43
  • 43
  • 40
  • 37
  • 37
  • 36
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Throughput Performance of CDMA Slotted ALOHA Systems Based on Average Packet Success Probability Considering Bit-to-Bit Dependence

Saito, Masato, Yamazato, Takaya, Katayama, Masaaki, Ogawa, Akira 02 1900 (has links)
No description available.
242

Application of Successive Interference Cancellation to a Packet-Recognition/Code-Acquisition Scheme in CDMA Unslotted ALOHA Systems

Tadokoro, Yukihiro, Okada, Hiraku, Yamazato, Takaya, Katayama, Masaaki 06 1900 (has links)
No description available.
243

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.
244

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.
245

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.
246

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.
247

Optimized network access in heterogeneous wireless networks

Hildebrand, Matthias. January 2005 (has links)
University, Diss., 2005--Kassel. / Download lizenzpflichtig.
248

Μοντέλα απωλειών κλήσεων πολυδιάστατης τηλεπικοινωνιακής κίνησης με έμφαση σε ασύρματα δίκτυα / Multi-rate teletraffic loss models with emphasis on wireless networks

Βασιλάκης, Βασίλειος 03 November 2011 (has links)
Η παρούσα διδακτορική διατριβή πραγματεύεται την ανάλυση και προσομοίωση των συστημάτων απωλειών πολυδιάστατης τηλεπικοινωνιακής κίνησης, σε επίπεδο κλήσεων. Στα πλαίσια της διατριβής έχουν μελετηθεί ασύρματα δίκτυα τεχνολογίας W-CDMA, ενσύρματα συνδεσιμοστρεφή δίκτυα και οπτικά δίκτυα. Ιδιαίτερη έμφαση δόθηκε στα ασύρματα δίκτυα. Η ανάλυση των συστημάτων απωλειών κίνησης εξαρτάται κατά κύριο λόγο από τις διαδικασίες άφιξης και εξυπηρέτησης των κλήσεων. Στην διδακτορική αυτή διατριβή προτείνονται οκτώ νέα μοντέλα απωλειών κλήσεων. Τα έξη από αυτά είναι κατάλληλα για την ανάλυση της απόδοσης σε επίπεδο κλήσεων των ασύρματων δικτύων τεχνολογίας W-CDMA. Τα υπόλοιπα δύο είναι γενικά μοντέλα, κατάλληλα για ενσύρματα συνδεσιμοστρεφή τηλεπικοινωνιακά δίκτυα και οπτικά δίκτυα. Ανάλογα με την διαδικασία άφιξης των κλήσεων στο σύστημα, διακρίνουμε δύο είδη κίνησης: τυχαία και ψευδο-τυχαία. Η τυχαία κίνηση παράγεται όταν η διαδικασία άφιξης των κλήσεων στο σύστημα είναι Poisson. Αυτό αντιστοιχεί στην υπόθεση ότι έχουμε άπειρο πλήθος πηγών που παράγουν κλήσεις. Όταν το πλήθος των πηγών είναι πεπερασμένο, τότε παράγεται ψευδο-τυχαία κίνηση. Ανάλογα με τις απαιτήσεις των κλήσεων σε πόρους και σε χρόνο εξυπηρέτησης κατά την άφιξή τους στο σύστημα, διακρίνουμε τρία είδη κίνησης: σταθερή, ελαστική και προσαρμοζόμενη. Η σταθερή κίνηση παράγεται από κλήσεις που έχουν σταθερές απαιτήσεις σε πόρους και σε χρόνο εξυπηρέτησης. Η ελαστική και η προσαρμοζόμενη κίνηση παράγεται από κλήσεις που μπορούν να έχουν διαφορετικές, εναλλακτικές απαιτήσεις σε πόρους, ανάλογα με την διαθεσιμότητα των πόρων στο σύστημα. Ανάλογα με την συμπεριφορά των κλήσεων μετά την αποδοχή τους στο σύστημα, διακρίνουμε: α) κλήσεις που κατά την διάρκεια της εξυπηρέτησης δεν μπορούν να μεταβάλουν το εύρος ζώνης που τους έχει ανατεθεί (σταθερός ρυθμός μετάδοσης), και β) κλήσεις που κατά την διάρκεια της εξυπηρέτησης μπορούν να μεταβάλουν το εύρος ζώνης (ελαστικός ρυθμός μετάδοσης) προκειμένου το σύστημα να μπορεί να δεχτεί και άλλες κλήσεις. / In this PhD dissertation new multi-rate teletraffic loss models are developed for the call-level analysis of wireless W-CDMA networks, connection-oriented networks and optical networks. The model's accuracy and consistency are verified by simulation and found to be very satisfactory. The analysis of loss systems mainly depends on the call arrival and call service processes. Eight new teletraffic loss models are proposed. Six of them are suitable for the call-level performance analysis of W-CDMA networks, while the other two models are more general and suitable for the analysis of either connection-oriented networks or optical networks. According to the call arrival process, we distinguish two types of traffic: random and quasi-random. Random traffic is generated when the call arrival process is Poisson. This coincides with the assumption that the number of traffic sources is infinite. When the number of traffic sources is finite, we have the so called quasirandom traffic. According to the calls’ resource and service time requirements, we distinguish three types of traffic: stream, elastic and adaptive. Stream traffic is generated by calls that have fixed resource and service time requirements. Elastic and adaptive traffic is generated by calls that may have alternative contingency resource requirements depending on the resource availability or the capacity of the system. According to the calls’ behaviour after their acceptance into the system, we distinguish: a) calls that during their service time are not able to change the number of allocated resources (constant transmission rate) and b) calls that during their service time are able to change the number of allocated resources (elastic transmission rate) in order for the system to be able to accept more calls.
249

Desenvolvimento de um protótipo veicular destinado às atividades de campo

Vist, Helio Larri January 2007 (has links)
O Sistema de Posicionamento Global (GPS) permite uma grande variedade de aplicações civis e militares. Dentre as várias aplicações, uma de especial interesse é a navegação, que tem crescido muito nos últimos anos devido a fatores como menor custo, e fácil utilização desta tecnologia. Num sistema de navegação terrestre, assim como na navegação marítima, fluvial e aérea, um mapa digitalizado, ou imagem de satélite disponível da região de interesse é exibida na tela do computador de bordo e a posição do veículo é apresentada em "tempo real" a partir da posição fornecida por receptores GPS. Além disso, a comunicação disponível nos dias de hoje permite uma maior integração entre o veículo e o escritório. Finalmente, o Google Earth permite que se tenha acesso a uma grande quantidade de informações necessárias ao desenvolvimento de inúmeros trabalhos, permitindo inclusive a inserção de fotos e imagens para registro dos acontecimentos. O potencial deste tipo de sistema só foi possível a partir de maio de 2000, com a eliminação da SA (Selective Availability).Com isso, o posicionamento absoluto realizado por receptores de navegação (menos precisos do que os receptores geodésicos) foi aprimorado, podendo conseguir precisões da ordem de 10m, o que aumenta a qualidade de aplicações como a navegação terrestre. A proposta desta dissertação é descrever o desenvolvimento de um protótipo veicular para aplicações de campo em Geociências, onde foi incluída a navegação em tempo real, o uso da internet para a comunicação pessoal e interface de acesso ao Google Earth. O protótipo desenvolvido permite a extensão de parte da infra-estrutura de um laboratório para apoio das atividades de campo. / In our days the Global Positioning Systems (GPS) is a technology with a great variety of military and civilian applicability. Among this uses, navigation is one activity that is largely increasing in reason to lowering equipment prices and introduced facilities as easy to use technology. In practice, a system structured to navigate in terrestrial, maritime, fluvial or aerial way is formed by a GPS connected to an onboard computer and video equipped with appropriate software that process in a instantaneous mode (real time) all the information necessary to show on screen the geographical position of the vehicle. In parallel, new advances in network communication open the possibility to integrate completely the vehicle in movement with the staff in the office. Also, the Geoogle Earth™ and World Wide Web increase the facilities to view online the terrain and open the possibility to user interact directly with routines that insert local photo and images. Navigate with accuracy using a single-receiver GPS linked to a computer was only possibly after May of 2000, when the SA (Selective Availability) was excluded from GPS signal. Consequently, absolute positioning with one band handled GPS (low accuracy when compared to geodetic two bands GPS) was tested and the results show the availability to locate points in the Earth surface with an uncertainty degree not above than 10 meters (in terms of planimmetric coordinates). This performance increases the data quality and the ability of single-receiver GPS to be used to navigation purposes. In this work, it is assembled and tested a navigation system prototype installed in a vehicle with the objective to optimize field survey and adapted to some geosciences necessities, including the possibility to navigate in real time integrated with Internet facilities to personal communication and with an interface to access the Google Earth™. The configuration of the navigation system prototype elaborated in this project permit to extend to the field some facilities only accessible in a laboratory environment and consequently the results obtained with the system increased the performance of all the field work stages.
250

Detecção multiusuário baseada em tensores para sistemas de comunicação sem fio cooperativos / Tensor-based multiuser detection for cooperative wireless communications systems

Peixoto, Antonio Augusto Teixeira 07 1900 (has links)
Peixoto, A. A. T. Detecção multiusuário baseada em tensores para sistemas de comunicação sem fio cooperativos. 2017. 115 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Campus de Sobral, Universidade Federal do Ceará, Sobral, 2017. / Submitted by Programa de Pós-Graduação Engenharia Elétrica e de Computação (secretaria_ppgeec@sobral.ufc.br) on 2017-08-14T13:53:24Z No. of bitstreams: 1 2017_dis_aatpeixoto.pdf: 1646922 bytes, checksum: a562da60d08daac64247b2013ca22436 (MD5) / Approved for entry into archive by Djeanne Costa (djeannecosta@gmail.com) on 2017-08-17T11:50:56Z (GMT) No. of bitstreams: 1 2017_dis_aatpeixoto.pdf: 1646922 bytes, checksum: a562da60d08daac64247b2013ca22436 (MD5) / Made available in DSpace on 2017-08-17T11:50:56Z (GMT). No. of bitstreams: 1 2017_dis_aatpeixoto.pdf: 1646922 bytes, checksum: a562da60d08daac64247b2013ca22436 (MD5) Previous issue date: 2017-07 / Signal processing applications in wireless communications may sometimes take advantage of multilinear algebra concepts. This can be done by modeling the signals as high order tensors. From this context, tensor decompositions such as the Parallel Factor analysis (PARAFAC), may be found useful. On the other hand, cooperative communications and Multiple-Input Multiple-Output (MIMO) systems are ways for granting better data rates, capacity, fading mitigation and coverage. Joining the signal processing capabilities of tensor algebra, MIMO and cooperative communications can bring great benefits in wireless communications systems. In this dissertation, two receivers are proposed for two system models that are a multiuser DS-CDMA (Direct-Sequence Code-Division Multiple-Access) uplink based on multirelay cooperative communications. The two system models are almost the same, except that in one of them, multiuser interference is considered at the relays. The Amplify-and-Forward (AF) protocol is used on all the relays, thus exploiting cooperative diversity. For the received signal of the first system model, a quadrilinear PARAFAC decomposition will be adopted and by doing so, the proposed tensor-based semi-blind receiver can jointly estimate the transmitted symbols, channel gains and spatial signatures of all users by assuming previous knowledge of the users spreading codes and a few transmitted symbols. For the second system model, multiuser interference is considered at the relays, then, a receiver based on a trilinear PARAFAC decomposition is proposed. The estimation of the second receiver is done in two phases with the first phase being a supervised stage where non-orthogonal training sequences are sent by all users. During the second phase, the users' data symbols are then estimated. Both receivers use the Alternating Least Squares (ALS) algorithm to fit the tensor models, assuming no channel state information (CSI) at the base station neither at the relays. With computational simulations, we will also provide performance evaluation of the proposed receivers for various cases and system variations. / As aplicações de processamento de sinal em sistemas de comunicações sem fio às vezes podem tirar proveito de conceitos de álgebra multilinear. Isso pode ser feito modelando os sinais como tensores de ordem elevada. Neste contexto, as decomposições tensoriais, tais como a análise de fatores paralelos (Parallel Facor - PARAFAC), podem ser úteis. Por outro lado, as comunicações cooperativas e a área de sistemas de múltiplas-entradas e múltiplas-saídas (Multiple-Input Multiple-Ouput - MIMO) são uma maneira de se alcançar melhores taxas de dados, capacidade, qualidade de transmissão e cobertura. Juntando-se as capacidades de processamento de sinal da álgebra tensorial, dos sistemas MIMO e das comunicações cooperativas, podemos obter grandes benefícios nos sistemas de comunicações sem fio. Nesta dissertação, dois receptores são propostos para dois modelos de sistema, que são o enlace reverso de um sistema DS-CDMA multiusuário baseado em comunicações cooperativas auxiliadas por múltiplos retransmissores. Os dois modelos de sistema são quase iguais, exceto que em um deles, a interferência de múltiplos usuários é considerada nos retransmissores. O protocolo Amplify-and-Forward (AF) é aplicado em cada retransmissor, explorando a diversidade cooperativa. Para o sinal recebido no primeiro modelo de sistema, uma decomposição tensorial PARAFAC quadrilinear será adotada e, ao fazê-lo, o receptor semi-cego proposto pode estimar conjuntamente os símbolos transmitidos, ganhos de canais e assinaturas espaciais de todos os usuários, assumindo o conhecimento prévio dos códigos de espalhamento dos usuários e alguns símbolos transmitidos. Para o segundo modelo de sistema, interferência multiusuário é considerada nos retransmissores dos usuários, então, um receptor baseado em uma decomposição PARAFAC trilinear é proposto. O segundo receptor realiza as estimações em duas fases, sendo a primeira fase um estágio supervisionado em que todos os usuários enviam sequências de treinamento não ortogonais. Durante a segunda fase, os símbolos de dados dos usuários são então estimados. Ambos os receptores usam o algoritmo ALS (Alternating Least Squares) para ajustar os modelos tensoriais, assumindo nenhuma informação de estado do canal (CSI - Channel State Information) na estação base nem nos retransmissores. Com simulações computacionais, também forneceremos avaliação de desempenho dos receptores propostos para vários casos e variações do sistema.

Page generated in 0.0254 seconds