• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 40
  • 10
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 173
  • 43
  • 34
  • 28
  • 26
  • 26
  • 25
  • 25
  • 24
  • 24
  • 21
  • 20
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Determination of Metal Dispersion of Pt/CeO2 Catalyst by CO-pulse Method

駒井, 慎一, Komai, Shin'ichi, 矢澤, 義輝, Yazawa, Yoshiteru, 薩摩, 篤, Satsuma, Atsushi, 服部, 忠, Hattori, Tadashi January 2005 (has links)
No description available.
52

Development of methane oxidation catalysts for different gas turbine combustor concepts

Eriksson, Sara January 2005 (has links)
<p>Due to continuously stricter regulations regarding emissions from power generation processes, development of existing gas turbine combustors is essential. A promising alternative to conventional flame combustion in gas turbines is catalytic combustion, which can result in ultra low emission levels of NO<sub>x</sub>, CO and unburned hydrocarbons. The work presented in this thesis concerns the development of methane oxidation catalysts for gas turbine combustors. The application of catalytic combustion to different combustor concepts is addressed in particular.</p><p>The first part of the thesis (Paper I) reports on catalyst development for fuel-lean methane combustion. The effect on catalytic activity of diluting the reaction mixture with water and carbon dioxide was studied in order to simulate a combustion process with exhaust gas recirculation. Palladium-based catalysts were found to exhibit the highest activity for methane oxidation under fuel-lean conditions. However, the catalytic activity was significantly decreased by adding water and CO<sub>2</sub>, resulting in unacceptably high ignition temperatures of the fuel.</p><p>In the second part of this thesis (Paper II), the development of rhodium catalysts for fuel-rich methane combustion is addressed. The effect of water addition on the methane conversion and the product gas composition was studied. A significant influence of the support material and Rh loading on the catalytic behavior was found. The addition of water influenced both the low-temperature activity and the product gas composition.</p>
53

Novel blends of sulfur-tolerant water-gas shift catalysts for biofuel applications

Roberge, Timothy Michael 01 January 2012 (has links)
As traditional sources of energy become depleted, significant research interest has gone into conversion of biomass into renewable fuels. Biomass-derived synthesis gas typically contains concentrations of approximately 30 to 600 ppm H2S in stream. H2S is a catalyst poison which adversely affects downstream processing of hydrogen for gas to liquid plants. The water-gas shift reaction is an integral part of converting CO and steam to H2 and CO2. Currently, all known water-gas shift catalysts deactivate in sulfur concentrations typical of biomass-derived synthesis gas. Novel catalysts are needed to remain active in the presence of sulfur concentrations in order to boost efficiency and mitigate costs. Previous studies have shown molybdenum to be active in concentrations of sulfur greater than 300 ppm. Cobalt has been shown to be active as a spinel in concentrations of sulfur less than 240 ppm. Ceria has received attention as a WGS catalyst due to its oxygen donating properties. These elements were synthesized via Pechini's method into various blends of spinel metal oxide solutions. Initial activity testing at lower steam to gas ratios produced near equilibrium conversions for a Ce-Co spinel which remained active in 500 ppm H2S over a temperature range of 350 °C to 400 °C. The catalysts became poisoned and deactivated in higher concentrations of sulfur. Addition of molybdenum to the Ce-Co base had little effect on sulfur tolerance, but it did lead to a reduction in selectivity for methanation. Surface area increased due to adsorbed H2S, and X-Ray Diffraction confirmed that bulk sulfiding did not occur. Incorporation of Ce and Co into a Fe spinel hindered conversion at lower temperatures and deactivated in higher levels of sulfur.
54

The Fabrication of Direct Oxidation Solid Oxide Fuel Cell Anodes Using Atmospheric Plasma Spraying

Cuglietta, Mark 07 January 2014 (has links)
Solid oxide fuel cells (SOFCs) that operate directly on hydrocarbon fuels eliminate the requirement for costly and complex external reforming systems. Atmospheric plasma spraying (APS) is an established manufacturing method that offers the potential to fabricate direct oxidation SOFC anodes in a single step, instead of the multiple steps currently required. Manufacturing by APS also allows the use of metal supports, which improve thermal shock resistance, allow rapid cell heat-up, and reduce total cost. In this study, direct oxidation SOFC anodes based on Cu and samaria-doped ceria (SDC) in combination with Co and/or Ni were investigated for their stability and performance in H2 and CH4 when plasma sprayed on ferritic stainless steel supports. Several different APS techniques were investigated. Two of these techniques were hybrid methods involving a combination of dry powder plasma spray and suspension plasma spray (SPS) processes. These techniques were proposed to help balance the degree of melting of the lower melting temperature oxides of the metals Cu, Co, and Ni with that of the higher melting temperature SDC. The use of a single suspension containing all of the anode component feedstocks was also investigated. Multi-component aqueous suspensions of CuO, Co3O4, and NiO were developed with or without the addition of carbon black and SDC. It was found that the use of a hybrid plasma spray technique can help to improve deposition efficiency (D.E.) and enhance partial melting of the low melting temperature feedstocks. However, plasma spraying all of the components in a single suspension can lead to more homogeneous mixing and greater resistance to metal coarsening at SOFC operating temperatures. In electrochemical tests of plasma-sprayed metal-supported cells containing these anodes, peak power densities as high as 0.6 W/cm2 were achieved at 750 deg C in humidified H2. In CH4, power density was limited by the activity of the anodes. Stability in CH4 was poor because of oxidation of the metal support and enhanced coking behaviour resulting from interactions between Fe in the support and Co and Ni in the anodes. When separated from the supports, the anodes demonstrated very low coking rates in thermogravimetric analysis experiments in CH4.
55

The Fabrication of Direct Oxidation Solid Oxide Fuel Cell Anodes Using Atmospheric Plasma Spraying

Cuglietta, Mark 07 January 2014 (has links)
Solid oxide fuel cells (SOFCs) that operate directly on hydrocarbon fuels eliminate the requirement for costly and complex external reforming systems. Atmospheric plasma spraying (APS) is an established manufacturing method that offers the potential to fabricate direct oxidation SOFC anodes in a single step, instead of the multiple steps currently required. Manufacturing by APS also allows the use of metal supports, which improve thermal shock resistance, allow rapid cell heat-up, and reduce total cost. In this study, direct oxidation SOFC anodes based on Cu and samaria-doped ceria (SDC) in combination with Co and/or Ni were investigated for their stability and performance in H2 and CH4 when plasma sprayed on ferritic stainless steel supports. Several different APS techniques were investigated. Two of these techniques were hybrid methods involving a combination of dry powder plasma spray and suspension plasma spray (SPS) processes. These techniques were proposed to help balance the degree of melting of the lower melting temperature oxides of the metals Cu, Co, and Ni with that of the higher melting temperature SDC. The use of a single suspension containing all of the anode component feedstocks was also investigated. Multi-component aqueous suspensions of CuO, Co3O4, and NiO were developed with or without the addition of carbon black and SDC. It was found that the use of a hybrid plasma spray technique can help to improve deposition efficiency (D.E.) and enhance partial melting of the low melting temperature feedstocks. However, plasma spraying all of the components in a single suspension can lead to more homogeneous mixing and greater resistance to metal coarsening at SOFC operating temperatures. In electrochemical tests of plasma-sprayed metal-supported cells containing these anodes, peak power densities as high as 0.6 W/cm2 were achieved at 750 deg C in humidified H2. In CH4, power density was limited by the activity of the anodes. Stability in CH4 was poor because of oxidation of the metal support and enhanced coking behaviour resulting from interactions between Fe in the support and Co and Ni in the anodes. When separated from the supports, the anodes demonstrated very low coking rates in thermogravimetric analysis experiments in CH4.
56

Structure and Catalytic Properties of Ultra-Small Ceria Nanoparticles

Huang, Xing 01 January 2014 (has links)
Cerium dioxide (ceria) is an excellent catalytic material due to its ability to both facilitate oxidation/reduction reactions as well as store/release oxygen as an oxygen buffer. The traditional approach to assess and improve ceria's catalytic behavior focuses on how efficiently O-vacancies can be generated and/or annihilated within the material, and how to extend established understandings of "bulk" ceria to further explain the greatly enhanced catalytic behavior of ultra-small ceria nanoparticles (uCNPs) with sizes less than 10 nm. Here, using density functional theory (DFT) calculations, we reexamine the atomic and electronic structures of uCNPs, especially their surface configurations. A unique picture dissimilar to the traditional point of view emerges from these calculations for the surface structure of uCNPs. uCNPs similar to those obtained by experimental synthesis and applied in catalytic environments exhibit core-shell like structures overall, with under-stoichiometric, reduced CNP "cores" and over-stoichiometric, oxidized surface "shell" constituted by various surface functional groups, e.g.,-Ox and/or -OH surface groups. Therefore, their catalytic behavior is dominated by surface chemistry rather than O-vacancies. Based on this finding, reaction pathways of two prevalent catalytic reactions, namely CO oxidation and the water-gas shift reaction over uCNPs are systematically investigated. Combined, these results demonstrate an alternative understanding of the surface structure of uCNPs, and provide new avenues to explore and enhance their catalytic behavior, which is likely applicable to other transition metal oxide nanoparticles with multivalent ions and very small sizes.
57

A novel solar-driven system for two-step conversion of CO2 with ceria-based catalysts

Wei, Bo January 2014 (has links)
Global warming is an unequivocal fact proved by the persistent rise of the average temperature of the earth. IPCC reported that scientists were more than 90 % certain that most of the global warming was caused by increasing concentrations of greenhouse gases (GHG) produced by human activities. One alternative to combat the GHG is to explore technologies for utilizing CO2 already generated by current energy systems and develop methods to convert CO2 into useful combustible gases. Two-step conversion of CO2 with catalysts is one of the most promising methods. Ceria (CeO2) is chosen as the main catalyst for this conversion in the thesis. It releases O2 when it is reduced in a heating process, and then absorbs O2 from CO2 to produce CO when it is re-oxidized in a cooling process. To make the conversion economic, solar power is employed to drive the conversion system. In this thesis, a flexible system with fluidized bed reactors (FBRs) is introduced. The thermogravimetric analysis (TGA) was carried out to examine the performance of ceria during its reduction and oxidation. Subsequently, the exergy analysis was used to evaluate the system’s capability on exporting work. The theoretical fuel to chemical efficiency varied from 4.85 % to 43.2 % for CO2 conversions. To investigate the operation mechanism of the system, a mathematical model was built up for the dynamic simulation of the system. Variables such as temperatures and efficiencies were calculated and recorded for different cases. The optimum working condition was found out to be at 1300 ⁰C for the commercial type of ceria. Finally, an experimental system was set up. The hydrodynamics and heat transfer in the fluidized bed reactor were studied. A CFD model was built up and validated with the experimental trials around 120 ⁰C. The model was then used as a reliable tool for the optimization of the reactor. The entire work in the thesis follows the procedure of developing an engineering system. It forms a solid basis for further improvements of the system to recycle CO2. / <p>QC 20141006</p>
58

Synthese und Charakterisierung SiC-basierter Katalysatorsysteme und deren Anwendung in der Oxidation von Methan

Frind, Robert 06 July 2011 (has links) (PDF)
Die Nutzung fossiler Energieträger hat die wirtschaftliche und gesellschaftliche Entwicklung der Menschheit bedeutend geprägt. Die Relevanz der verschiedenen Brennstoffe ist dabei stark vom technologischen Niveau abhängig gewesen. Mit der fortschreitenden Entwicklung und dem Aufstreben der Automobilindustrie in der ersten Hälfte des 20. Jahrhunderts gewann Erdöl als Quelle für verschiedene Kraftstoffe und Grundchemikalien immer größere Bedeutung. Der Energieverbrauch der Industriestaaten ist seit dem stetig gestiegen und zum Ende des 20. Jahrhunderts treten immer mehr Schwellenländer wie China, Indien oder Brasilien mit großem Energiehunger in Erscheinung. Dadurch wurden die Vorkommen fossiler Brennstoffe mit immer höherem Tempo ausgebeutet, sodass Schätzungen davon ausgehen, dass bereits 2030 nur noch 75% des Bedarfs durch bereits erschlossene Lagerstätten gedeckt werden können.[1] Im Gegensatz dazu sind die Reserven an Erdgas noch deutlich größer. Erdgas besteht vor allem aus Methan, welches auch über alternative Methoden z.B. Biofermentation hergestellt werden kann. Neben der Nutzung als primärer Energieträger ist Methan Ausgangsstoff für die Herstellung einer Vielzahl chemischer Produkte, z.B. Methanol oder kurzkettige Olefine[2, 3]. Eine wichtige Zwischenstufe dieser Prozesse stellt die Herstellung von Synthesegas dar, einem Gemisch aus Wasserstoff und Kohlenmonoxid. Die Herstellung erfolgt industriell über die Reaktion von Methan und Wasserdampf, dem Steamreforming. Alternative Verfahren stellen die partielle Oxidation von Methan und das Dry Reforming dar. In dieser Arbeit wurde die Aktivität verschiedener Katalysatorsysteme in der Totaloxidation, der partiellen Oxidation und dem Dry Reforming von Methan untersucht. Zur Synthese der Katalysatoren wurde die von E.Kockrick[4, 5] entwickelte Mikroemulsionsmethode angewandt. Dabei wurde die Abhängigkeit der katalytischen Aktivität von der Zusammensetzung der Komposite und den Synthesebedingungen untersucht. Das modulare Syntheseprinzip der Mikroemulsionsmethode wurde durch die Substitution der katalytisch aktiven Spezies durch verschiedene Übergangsmetalle und Gemische demonstiert. Weiterhin wurde eine neue Methode zur Herstellung makroporöser SiC-Keramiken (Abbildung 1) entwickelt. Dabei wird ein flüssiges Polycarbosilan in einer Emulsion mit besonders hohem Anteil der inneren Phase (high internal phase emulsion = HIPE) polymerisiert und zum SiC umgesetzt. Diese SiC-PolyHIPEs zeichnen sich durch ihre hohe Porosität und geringe Dichte aus. Ausgehend von der Synthesevorschrift nach Schwab et al.,[6] die die Synthese styrolbasierter PolyHIPEs beschreibt, wurde Styrol schrittweise durch SMP-10 ersetzt. Die erfolgreiche Inkorporation wurde durch thermogravimetrische Untersuchungen nachgewiesen. Zur Vernetzung des HIPE wurden verschiedene Initiatoren verwendet. Über den Anteil des SMP-10 am PolyHIPE konnte direkt Einfluss auf den Porenradius und die Dichte genommen werden, wobei die Porosität konstant bei 75% gehalten werden konnte.[7] Das Potential der SiC-PolyHIPEs für den Einsatz als poröser Katalysatorträger konnte durch die Funktionalisierung mit CeO2 und den Einsatz in der temperaturprogrammierten Oxidation von Methan nachgewiesen werden. Bereits durch eine Beladung des SiC-PolyHIPEs mit 30 Gew.% CeO2 konnte die gleiche Umsetzungstemperatur des Methans erreicht werden wie bei reinem CeO2. Eine weitere Strategie zur Erzeugung katalytisch aktiver SiC-Materialien wurde über die Funktionalisierung des Polycarbosilans mit hydrophoben CeO2-Nanopartikeln und Cerkomplexen entwickelt. Dabei zeigte sich, dass durch das Einbringen von 5 Gew.% über Dodecylamin stabilisierter CeO2-Nanopartikel eine ähnliche Aktivität in der Methanoxidation erreicht wurde, wie mit reinem Cerdioxid. Die Funktionalisierung des SMP-10 mit Cerkomplexen ergab für alle Cerkomplexe eine Phasenseparation nach dem Entfernen des Lösungsmittels. Nach der getrennten Pyrolyse der Phasen konnte nur im Pyrolysat der festen Phase Cer nachgewiesen werden, wodurch die Methanoxidation katalysiert wird. Als weitere Methode zur Erzeugung katalytisch aktiver und poröser SiC-Komposite wurde die von E.Kockrick entwickelte inverse Mikroemulsionsmethode[4, 5] verwendet. Die gewonnenen CeO2/Pt-SiCKomposite zeigten spezifische Oberflächen von bis zu 482m²/g bei einer Pyrolysetemperatur von 840 °C. Bei höheren Pyrolysetemperaturen von 1200 bzw. 1500 °C wurden Komposite mit maximal 428 bzw. 87m²/g erhalten. Die katalytischen Untersuchungen der CeO2/Pt-SiC-Komposite erfolgten an einem selbst entwickelten Katalyseteststand mit online-Analytik.[8] Dabei wurden die Totaloxidation, die partielle Oxidation und das Dry Reforming von Methan untersucht. Die Umsetzungstemperatur in der Totaloxidation von Methan konnte um bis zu 443K abgesenkt werden. In der partiellen Oxidation von Methan, wie auch beim Dry Reforming konnte bereits ab einer Reaktortemperatur von 805 °C Umsätze gemäß dem thermodynamischen Gleichgewicht erreicht werden. Die Aktivität in der partiellen Oxidation ist vor allem abhängig vom Platingehalt im Komposit. Die höchste Aktivität war bei den Kompositen mit niedriger Pyrolysetemperatur zu verzeichnen. Nach der Pyrolyse bei 1500 °C hingegen wurden aufgrund der geringeren spezifischen Oberfläche und der damit einhergehenden verminderten Zugänglichkeit der aktiven Zentren geringere Umsätze beobachtet. Einen guten Kompromiss zwischen Oxidationsbeständigkeit und katalytischer Aktivität stellten hier die Komposite dar, die bei 1200 °C pyrolysiert wurden. Mit diesen Kompositen wurden ab 805 °C bis zu 90% Umsatz und 80% Selektivität zu CO in der partiellen Oxidation von Methan und im Dry Reforming erreicht. Beim wiederholten Einsatz der CeO2/Pt-SiC-Komposite in der temperaturprogrammierten Oxidation von Methan konnte nach über 7 Zyklen keine Deaktivierung des Katalysators beobachtet werden. Die Übertragbarkeit der Mikroemulsionsmethode konnte durch den Einsatz verschiedener anderer Katalysatormaterialien gezeigt werden. Die katalytische Aktivität der erhaltenen porösen MI/MII-SiCKomposite wurde in der temperaturprogrammierten Oxidation von Methan mit einer Absenkung der Onsettemperatur um 177K bis 267K bestimmt. Damit stellt die Mikroemulsionsmethode eine flexible und robuste Möglichkeit zur Herstellung poröser SiC-Komposit-Katalysatoren dar. Literatur [1] International Energy Agency; World Energy Outlook, 2010. [2] M. Stöcker, Microporous Mesoporous Mater., 1999, 29(1-2), 3–48. [3] A.P.E. York, T. Xiao, M.L.H. Green, and J.B. Claridge, Catal. Rev. - Sci. Eng., 2007, 49(4), 511 – 560. [4] E. Kockrick, P. Krawiec, U. Petasch, H.-P. Martin, M. Herrmann, and S. Kaskel, Chem. Mater., 2008, 20(1), 77–83. [5] E. Kockrick, R. Frind, M. Rose, U. Petasch, W. Böhlmann, D. Geiger, M. Herrmann, and S. Kaskel, J. Mater. Chem., 2009, 19(11), 1543–1553. [6] M.G. Schwab, I. Senkovska, M. Rose, N. Klein, M. Koch, J. Pahnke, G. Jonschker, B. Schmitz, M. Hirscher, and S. Kaskel, Soft Matter, 2009, 5(5), 1055. [7] R. Frind, M. Oschatz, and S. Kaskel, J. Mater. Chem., 2011, (in Revision). [8] R. Frind, L. Borchardt, E. Kockrick, L. Mammitzsch, U. Petasch, M. Herrmann, and S. Kaskel, Appl. Catal., A, 2011, (in Revision).
59

Design and Evaluation of a Concentrating Solar Power System with Thermochemical Water Splitting Process for the Co-production of Hydrogen and Electricity

January 2018 (has links)
abstract: Thermodynamic development and balance of plant study is completed for a 30 MW solar thermochemical water splitting process that generates hydrogen gas and electric power. The generalized thermodynamic model includes 23 components and 45 states. Quasi-steady state simulations are completed for design point system sizing, annual performance analysis and sensitivity analysis. Detailed consideration is given to water splitting reaction kinetics with governing equations generalized for use with any redox-active metal oxide material. Specific results for Ceria illustrate particle reduction in two solar receivers for target oxygen partial pressure of 10 Pa and particle temperature of 1773 K at a design point DNI of 900 W/m2. Sizes of the recuperator, steam generator and hydrogen separator are calculated at the design point DNI to achieve 100,000 kg of hydrogen production per day from the plant. The total system efficiency of 39.52% is comprised of 50.7% hydrogen fraction and 19.62% electrical fraction. Total plant capital costs and operating costs are estimated to equate a hydrogen production cost of $4.40 per kg for a 25-year plant life. Sensitivity analysis explores the effect of environmental parameters and design parameters on system performance and cost. Improving recuperator effectiveness from 0.7 to 0.8 is a high-value design modification resulting in a 12.1% decrease in hydrogen cost for a modest 2.0% increase in plant $2.85M. At the same time, system efficiency is relatively inelastic to recuperator effectiveness because 81% of excess heat is recovered from the system for electricity production 39 MWh/day and revenue is $0.04 per kWh. Increasing water inlet pressure up to 20 bar reduces the size and cost of super heaters but further pressure rises increasing pump at a rate that outweighs super heater cost savings. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2018
60

Sistemas porosos de zircônia e céria / Zirconia-Ceria Porous Systems

Rebeca Bacani 16 December 2009 (has links)
Neste trabalho foram desenvolvidas sínteses de ZrO2-x%CeO2, baseadas na preparação da sílica mesoporosa ordenada SBA-15, utilizando um molde de co-polímero tribloco Pluronic P-123, diversos precursores de zircônio e cério e diferentes métodos. Os métodos de síntese testados foram com: precursores a base de cloreto hidratado (com x=50, 70 e 90), precursores a base de cloreto anidro (x=50 e 90), precursores a base de nitrato (x=90), solução supersaturada de nitrato (x=90), do tipo híbrido com Zr, Ce e Si (com 10%mol de Si e x=90), paliçada de Si (com 10 e 30%mol de Si e x=90) e paliçada de Si com temperatura de síntese de 40°C (com 30%mol de Si e x=90). Visando obter paredes compostas por fase cristalina única e grande área supercial, para futuras aplicações em catálise. Os compósitos polímero/(zircônio-cério) sintetizados a partir de cloretos formam uma estrutura lamelar organizada, que se transforma num sistema poroso desordenado após a calcinação para a retirada do molde. O processo de decomposição/remoção do molde até 540°C produz mudanças de fase nos precursores a base dos metais utilizados, além das transformações morfológicas. Para uma concentração de 90% de CeO2 obtém-se um material poroso com paredes homogêneas de estrutura fcc e de maior estabilidade mecânica. Os valores de área supercial e volume de poros dependem fundamentalmente do método de preparação do material e independem da concentração de CeO2. Aumentos signicativos da área supercial (~100m²/g) e do volume de poros (~0,4cm³/g) são obtidos a partir da introdução de sílica nesses sistemas. Foram alcançados área supercial aproximadamente 6 vezes maior e tamanho de cristalito ~4 vezes superior à do material similar nanocristalino preparado por gel-combustão. Esses valores também são iguais aos reportados para os melhores materiais porosos a base de zircônia-céria, preparados por outros métodos, encontrados na literatura. / In this work synthesis of ZrO2-x%CeO2 were developed, based on the formation of ordered mesoporous silica SBA-15, using the triblock co-polymer Pluronic P-123 as template, different precursors of zirconium and cerium and dierent methods. The tested synthesis methods were with: hydrated chloride precursors (with x=50, 70 and 90), anhydrous chloride precursors (x=50 and 90), nitrate precursors (x=90), supersaturated nitrate solution (x=90), hybrid type with Zr, Ce and Si (with 10%mol of Si and x=90), Si palisade (with 10 and 30%mol of Si, and x=90) and Si palisade with synthesis temperature of 40°C (with 30%mol of Si and x=90). Aiming to obtain crystalline single phase walls and large supercial area, for future applications in catalysis. The composites polymer/zirconium-cerium synthesized from chloride precursors formed an organized lamellar structure, which transforms into a disordered porous system after the calcination to remove the template. The template decomposition/removal up to 540°C produces phase transformations in the metallic precursors, besides morphological changes. A CeO2 content of 90% resulted in a porous material with homogeneous walls of fcc structure and better mechanical stability. The values of supercial area and pore volume depend mostly on the preparation method rather than the CeO2 concentration. Signicant increases on supercial area (~100m²/g) and pore volume (~0.4cm³/g) were obtained with the introduction of silica into the material. Supercial area ~6 times larger and crystallite size ~4 times superior to a nanocrystalline similar material, made by gel-combustion were attained. These figures are also equal to the ones reported for the best porous zirconia-ceria materials, prepared by other routes, found in the literature.

Page generated in 0.027 seconds