• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 40
  • 10
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 173
  • 43
  • 34
  • 28
  • 26
  • 26
  • 25
  • 25
  • 24
  • 24
  • 21
  • 20
  • 18
  • 18
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Zircônia céria mesoporosa para células de combustível e catalisadores / Mesoporous zirconia ceria for catalysts and fuel cells

Vinicius Roberto de Sylos Cassimiro 07 December 2015 (has links)
Os materiais à base de céria (CeO2) e zircônia (ZrO2) estão presentes em diversas aplicações tecnológicas, destacando-se como anodo de células de combustível de óxido sólido (SOFC) e em catálise, tanto para a produção de hidrogênio, como na automotiva (Three-Way Catalysis). A solução sólida ZrxCe1-xO2- é de especial interesse, pois apresenta melhor estabilidade térmica e maior capacidade de armazenamento de oxigênio (OSC), quando comparada com os óxidos não dopados. Os materiais mesoporosos (poros de 2 a 50 nm) possuem elevada área superficial e permeabilidade a gases, características estas importantes para o desempenho das SOFCs e dos processos de catálise. Neste trabalho, zircônia-céria (Zr0,1Ce0,9O2-) mesoporosa foi sintetizada pelo processo sol-gel, utilizando, como precursores, os cloretos inorgânicos (ZrCl4 e CeCl3.7H2O), o copolímero em bloco P123 (PEO20PPO70PEO20) como direcionador de estrutura e o TIPB (tri-isopropil-benzeno) como agente dilatador. A solução passou por tratamento hidrotérmico durante 48h a 80°C, com posterior calcinação a 400°C para a remoção do polímero, resultando no óxido cristalizado. Na análise foram utilizadas as técnicas: difração de raios X em alto ângulo (XRD), espalhamento de raios X a baixo ângulo (SAXS), isotermas de adsorção de nitrogênio (NAI) e microscopia eletrônica de varredura e transmissão (SEM e TEM). Os resultados mostraram que o material possui elevada área superficial (110m2/g), mesoporos de várias dimensões, atingindo valores médios em torno de 30 nm, fase majoritariamente cúbica Fm3m e, em menor proporção, tetragonal P42/nmc. As micrografias revelaram que o óxido está totalmente nano-cristalizado, com os poros tipo fendas e uma mesoporosidade secundária com distribuição de tamanhos menor e mais estreita. Quatro amostras foram sintetizadas com diferentes razões em massa TIPB/P123 (0, 1, 2 e 4), de forma que foi possível verificar um aumento na dimensão dos poros devido à inclusão do dilatador. As demais propriedades estruturais e morfológicas mantiveram-se inalteradas entre todas as amostras, mesmo com diferentes quantidades de TIPB. / The ceria (CeO2) and zirconia (ZrO2) based materials are present in several technological applications, mainly as Solid Oxide Fuel Cells (SOFC) anodes and catalysts, for hydrogen production and automotive converter (Three-Way Catalysis). The solid solution ZrxCe1-xO2- has attracted special attention, since it shows better thermal stability and higher oxygen storage capacity (OSC), if compared to the non-doped oxides. The mesoporous materials (pores of 2 to 50 nm) show high surface area and gas permeability, important properties for SOFCs and catalysts efficiency. In this work, mesoporous ceria-zirconia (Zr0,1Ce0,9O2-) was synthesized by a sol-gel route using inorganic chlorides (ZrCl4 e CeCl3.7H2O) as precursors, block copolymer P123 (PEO20PPO70PEO20) as template and TIPB (tri-isopropyl-benzene) as swelling agent. The solution was submitted to hydrothermal treatment for 48h at 80°C and calcined at 400°C to remove the template, resulting in the crystallized oxide. The characterization was performed by X-ray diffraction at high angles (XRD), small angle X-ray scattering (SAXS), nitrogen adsorption isotherms (NAI) and transmission and scanning electron microscopy (TEM and SEM). The results showed that the material has high surface area (110m2/g), a wide pore size distribution with mean values around 30 nm, predominant cubic phase Fm3m and, in less quantity, tetragonal P42/nmc. The micrographs revealed that the oxide is totally nano-crystallized, having pores with slit shape and a secondary smaller mesoporosity with a narrow size distribution. Four samples were produced with different TIPB/P123 mass rate (0, 1, 2, 4), therefore was possible to verify the pore size expansion due to the swelling addition. The structural and morphological properties remained unchanged, even with different quantities of TIPB.
92

Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics

Popovic, Marko 01 June 2018 (has links)
Entropy, first introduced in thermodynamics, is used in a wide range of fields. Chapter 1 discusses some important theoretical and practical aspects of entropy: what is entropy, is it subjective or objective, and how to properly apply it to living organisms. Chapter 2 presents applications of entropy to evolution. Chapter 3 shows how cellulosic biofuel production can be improved. Chapter 4 shows how lattice vacancies influence the thermodynamic properties of materials. To determine the nature of thermodynamic entropy, Chapters 1 and 2 describe the roots, the conceptual history of entropy, as well as its path of development and application. From the viewpoint of physics, thermal entropy is a measure of useless energy stored in a system resulting from thermal motion of particles. Thermal entropy is a non-negative objective property. The negentropy concept, while mathematically correct, is physically misleading. This dissertation hypothesizes that concepts from thermodynamics and statistical mechanics can be used to define statistical measurements, similar to thermodynamic entropy, to summarize the convergence of processes driven by random inputs subject to deterministic constraints. A primary example discussed here is evolution in biological systems. As discussed in this dissertation, the first and second laws of thermodynamics do not translate directly into parallel laws for the biome. But, the fundamental principles on which thermodynamic entropy is based are also true for information. Based on these principles, it is shown that adaptation and evolution are stochastically deterministic. Chapter 3 discusses the hydrolysis of cellulose to glucose, which is a key reaction in renewable energy from biomass and in mineralization of soil organic matter to CO2. Conditional thermodynamic parameters, ΔhydG', ΔhydH', and ΔhydS', and equilibrium glucose concentrations are reported for the reaction C6H10O5(cellulose) + H2O(l) ⇄ C6H12O6(aq) as functions of temperature from 0 to 100°C. Activity coefficients of aqueous glucose solution were determined as a function of temperature. The results suggest that producing cellulosic biofuels at higher temperatures will result in higher conversion. Chapter 4 presents the data and a theory relating the linear term in the low temperature heat capacity to lattice vacancy concentration. The theory gives a quantitative result for disordered vacancies, but overestimates the contribution from ordered vacancies because ordering leads to a decreased influence of vacancies on heat capacity.
93

Optimization of N2O decomposition RhOx/ceria catalysts and design of a high N2-selective deNOx system for diesel vehicles

Rico Pérez, Verónica 12 July 2013 (has links)
No description available.
94

Identification des processus physico-chimiques à l’origine des défauts locaux des surfaces polies optique et superpolies / Physicochemical mechanisms causing defects of polished and superpolished optical surfaces

Henault, Bastien 27 April 2018 (has links)
Ce travail de thèse porte sur l’étude des mécanismes physico-chimiques mis en jeu lors du polissage mécano-chimique du Zerodur® (vitrocéramique) par un abrasif à base d’oxydes de cérium. Les défauts obtenus à l’issu du polissage ont été caractérisés en microscopie optique et par microscopie à force atomique (AFM). Il en ressort deux principales populations, à savoir des rayures de type « fines » (longitudinales et continues) causées par des débris de matière polie. La seconde est la typologie « rayure éclat » (fractures perpendiculaires au sens de la rayure) causées par des agglomérats d’abrasif. Des analyses en spectroscopie RX de l’abrasif montrent une augmentation du ratio Ce3+/Ce4+ après la phase de polissage, confirmant la part chimique du polissage du Zerodur®. Des analyses de potentiel zêta ont été menées sur ces mêmes abrasifs et montrent une évolution de la charge de surface des particules abrasives. Des observations AFM montrent que plus la part Ce4+ est importante et meilleure est la qualité finale de la surface polie. La surface polie a également été sondée en ToF-SIMS. Il en ressort la présence d’une couche enrichie en cérium de plusieurs dizaines de nanomètres, lieu de la réaction mécano-chimique de polissage. Plus précisément, cette réaction semble avoir lieu dans la phase vitreuse du Zerodur®. / This PhD work focuses on the study of the physicochemical mechanisms involved in the chemical-mechanical polishing of Zerodur® (glass-ceramics) with an abrasive based on cerium oxides. The defects observed after polishing were characterized by optical microscopy and atomic force microscopy (AFM). Two main populations were observed, namely "fine" (longitudinal and continuous stripes) caused by debris of polished material. The second is called "scratch" (perpendicular fractures) caused by abrasive agglomerates. RX spectroscopic analyzes of the abrasive showed an increase in the Ce3+/ Ce4+ ratio after the polishing phase. This point confirms the chemical part of Zerodur® polishing. Zeta potential analyzes were carried out on these same abrasives and show an evolution of the abrasive surface charge. AFM observations show that the higher the Ce4+ concentration, the better the final polished surface quality. The polished surface was also probed with ToF-SIMS analyzes. This shows the presence of a cerium-enriched layer of several tens of nanometers, which may be a site for the chemical-mechanical polishing reaction. More precisely, this reaction seems to take place in the glassy phase of Zerodur®.
95

Physisorption of CO and N2O on ceria surfaces

Müller, Carsten January 2009 (has links)
Physisorption of CO and N2O on surfaces of ceria (CeO2) was investigated by means of high-level quantum-mechanical embedded cluster calculations. Both systems have high relevance in the field of environmental chemistry and heterogeneous catalysis. The CO/CeO2 system, has been investigated in a couple of both experimental and theoretical studies, but for the N2O/CeO2 system, this is the first study in the literature, experimental or theoretical. In physisorption, the interaction relies entirely on classical electrostatic interactions and electron dispersion forces. No covalent bond is formed between the molecule and the surface. A proper description of the dispersion requires some of the most accurate quantum-mechanical methods available, such as MP2 or CCSD(T). Moreover, even the most sophisticated methods cannot heal errors anywhere else in the theoretical treatment. Standard periodic models cannot be used with methods such as CCSD(T), but embedded cluster models can, and have been thoroughly explored in this thesis. In this thesis, embedded cluster models were constructed for the CeO2(110) and (111) surfaces. Using a range of assessment tests, it was verified that the electronic structure of the central region of a large and fully embedded surface cluster agrees well with the corresponding region in a periodic system. CO physisorption was investigated at the CCSD(T) level. Due to the prohibitively large expenses (in computer time) for standard CCSD(T) calculations, the method of increments, previously used in the literature for bulk systems, was extended to adsorption problems. It was found that, electron correlation contributes by 30 - 80% to the molecule-surface interaction and that the contribution depends on the topology of the surface. The calculated CO-ceria interaction energy is 20 kJ/mol for the (111) surface and 27 kJ/mol for the (110) surface. In low temperature TPD experiments for the N2O/CeO2(111) system, one surface species was found with an adsorption energy of about 29 kJ/mol. IR measurements showed stretching frequencies that are typically assigned to N2O adsorption with the O-end directed towards surface cations. However, theoretical calculations up to the MP2 level predicted two equally favorable adsorption species. Improvements in the structural model (larger clusters, consideration of molecule-induced relaxation) or the computational method (larger basis sets) did not affect this result. Only at the CCSD(T) level was one dominating surface species found, namely N2O adsorbed over a Ce ion, with the O-end of the molecule directed towards the surface. The calculated stretching vibrational frequency shifts (with respect to the gas phase) for this adsorbed species agree well with the measured IR spectra.
96

Preparation and characterization of perovskite structure lanthanum gallate and lanthanum aluminate based oxides

Li, Shuai January 2009 (has links)
<!--[if !mso]> <object classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object><mce:style><! st1\:*{behavior:url(#ieooui) } --> The present work was initiated to study the synthesis and properties of lanthanum gallate based oxides as intermediate temperature electrolyte for solid oxide fuel cells. The wet chemical method, polymer complexing route, was used to prepare the precursor powders. To further investigate the polymer complexing method, it was also applied to the preparation of lanthanum aluminate based oxides.   Single perovskite phase La0.8Sr0.2Ga0.83Mg0.17O2.815 can be prepared by the polymer complexing method using PVA as complexing agent. The thermal decomposition of the precursor powder undergoes three stages. While complete decomposition of the precursor is obtained at 1000°C. Further investigation of LaGaO3 doped with various amounts Sr or/and Mg was conducted. Three secondary phases were identified by X-ray diffraction, e.g. LaSrGaO4, LaSrGa3O7 and La4Ga2O9. The relative amount of these secondary phases depends on the doping compositions. Sr doping produced more Sr rich secondary phases with increasing content, while enhanced solid solubility was observed with Mg addition. Sintered samples showed dense microstructures with well-developed equiaxed grains, and the secondary phases were mainly in the grain boundaries. The oxygen ionic conductivity was enhanced by doping with Sr and Mg. Mg doping showed the increased activation energy of conductivity.   Preliminary study showed that the lanthanum gallate and ceria composite electrolyte is mainly fluorite CeO2 phase after sintering. The minority secondary phase, Sm3Ga5O12, was also detected by XRD. The composite electrolyte showed superior electrical performance. It exhibited the highest conductivity in the temperature range of 250–600°C, compared with lanthanum gallate and ceria specimens.   The phase pure perovskite La0.9Sr0.1Al0.85Mg0.1Co0.05O2.875 powders can easily be obtained by the polymer method using PVA as complexing agent. No secondary phase was detected after calcination at various temperatures (500–1100°C). The fully crystallized LaAlO3 phase was prepared after calcination at 900°C. Meanwhile the secondary phases were difficult to eliminate in the Sr- and Mg- doped LaGaO3 powder prepared by the same polymer method. It is thus concluded that the polymer, PVA in this work, provides more homogeneous mixing for cations of lanthanum aluminate based oxides, compared with the one for doped lanthanum gallate.   The influence of different complexing agents, e.g. PVA and PEG, was investigated in the synthesis of lanthanum aluminate powders. Minority impurity La2O3 existed in the PEG powder, but it could be eliminated after sintering at high temperatures. Although the pure phase LaAlO3 can be easily obtained in PVA powders calcined at 950°C, more seriously aggregated particles existed. PEG showed advantages over PVA in terms of better densification and microstructure control in the sintered products. To select proper polymers in complex oxide synthesis, the agglomeration and morphology of the powder are the most important factors to be considered. / QC 20100727
97

Hydrogen production from steam reforming of ethanol over an Ir/ceria-based catalyst : catalyst ageing analysis and performance improvement upon ceria doping

Wang, Fagen 23 October 2012 (has links) (PDF)
The objective of the thesis was to analyze the ageing processes and the modifications of an Ir/CeO2catalyst for steam reforming of ethanol. Over a model Ir/CeO2 catalyst, the initial and fast deactivationwas ascribed to ceria surface restructuring and the build-up of intermediates monolayer (acetate,carbonate and hydroxyl groups). In parallel, a progressive and slow deactivation was found to come fromthe structural changes at the ceria/Ir interface linked to Ir sintering and ceria restructuring. Theencapsulating carbon, coming from C2 intermediates polymerization, did not seem too detrimental to theactivity in the investigated operating conditions. By doping ceria with PrOx, the oxygen storage capacityand thermal stability were greatly promoted, resulting in the enhanced activity and stability. The Ir/CeO2catalyst was then modified by changing the shape of ceria. It was found that the shape and therefore thestructure of ceria influenced the activity and stability significantly. A simplified modeling of theseprocesses has contributed to support the new proposals of this work.
98

THE ROLE OF SURFACE CHEMISTRY IN THE TOXICITY OF MANUFACTURED CERIUM DIOXIDE NANOMATERIALS TO CAENORHABDITIS ELEGANS

Oostveen, Emily Kay 01 January 2014 (has links)
Manufactured CeO2 nanomaterials (CeO2-MNMs) are used for a wide variety of applications including diesel fuel additives and chemical/mechanical planarization media. To test the effects of CeO2-MNM surface coating charge on to model organism Caenorhabditis elegans, we synthesized 4 nm CeO2 with cationic (DEAE-), anionic (CM-), and neutral (DEX) coatings. In L3 nematodes exposed for 24 hours, DEAE-CeO2 induced lethality at lower concentrations than CM- or DEX-CeO2. Feeding slightly decreased CeO2 toxicity, regardless of coating. In L2 nematodes exposed for 48 hours with feeding, DEAE-CeO2 caused lethality at the lower concentrations as compared to CM- and DEX-CeO2. Sublethal effects were measured by observing reproduction and oxidative/nitrosative protein damage. Low concentrations of DEAE-CeO2 induced similar reductions as CM- and DEX-CeO2 that were two orders of magnitude higher. Using immunochemical slot blots to explore oxidative/nitrosative stress, no treatments produced significant changes in protein carbonyl or 3-nitrotyrosine formation; however, the statistical power of our assay was low. All treatments caused large but not statistically significant increases in protein carbonyl levels. DEAE-CeO2 exposure caused a significant reduction in 4-hydroxy-2-nonenol levels. This research suggests that cationic coatings render CeO2 significantly more toxic to C. elegans than neutral or anionic coatings.
99

A first-principles non-equilibrium molecular dynamicsstudy of oxygen diffusion in Sm-doped ceria

Klarbring, Johan January 2015 (has links)
Solid oxide fuel cells are considered as one of the main alternatives for future sources of clean energy. To further improve their performance, theoretical methods able to describe the diffusion process in candidate electrolyte materials at finite temperatures are needed. The method of choice for simulating systems at finite temperature is molecular dynamics. However, if the forces are calculated directly from the Schrödinger equation (first-principles molecular dynamics) the computational expense is too high to allow long enough simulations to properly capture the diffusion process in most materials. This thesis introduces a method to deal with this problem using an external force field to speed up the diffusion process in the simulation. The method is applied to study the diffusion of oxygen ions in Sm-doped ceria, which has showed promise in its use as an electrolyte. Good agreement with experimental data is demonstrated, indicating high potential for future applications of the method.
100

Optimization of Ionic Conductivity in Doped Ceria Using Density Functional Theory and Kinetic Lattice Monte Carlo

January 2011 (has links)
abstract: Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (&sim;1000 &deg;C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2011

Page generated in 0.0229 seconds