• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 40
  • 10
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 173
  • 43
  • 34
  • 28
  • 26
  • 26
  • 25
  • 25
  • 24
  • 24
  • 21
  • 20
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Methods for Efficient Slurry Utilization and Tribological Stability Analysis in Chemical Mechanical Planarization

Bahr, Matthew, Bahr, Matthew January 2017 (has links)
This thesis presents a series of studies pertaining to tribological, thermal, kinetic and slurry utilization aspects of chemical mechanical planaraization processes. The purpose of this work is to both develop a better method of characterizing the tribological mechanisms during polishing, as well as propose methods by which slurry utilization efficiency can be increased in order to minimize environmental hazards and operational costs associated with polishing without compromising the desired polish outcomes. The first study was conducted using a modified version of the generic Stribeck curve using real-time shear and down force data collection at 1,000 Hz. This investigation served to provide a better understanding of the tribological and thermal mechanisms associated with polishing copper and tungsten blanket wafers on an industrially relevant soft pad. A multitude of gradual yet continuous changes in sliding velocity and polishing pressure were applied during polishing. Results indicated that polishing on the soft pad produced stable coefficient of friction (COF) values entirely within the "boundary lubrication" regime, while copper polishing on a hard pads produced a tremendous spread of data and resulted in both “boundary lubrication” and "mixed lubrication" regimes. In addition, the average pad surface temperature showed a linear relationship with the product of the COF, sliding velocity, and downward pressure for all copper and tungsten polishes on both soft and hard pads. Another study in this thesis investigated slurry availability and the extent of slurry mixing for three different slurry injection schemes. An ultraviolet enhanced fluorescence technique was employed to qualitatively measure slurry film thicknesses atop the pad surface during polishing. This study investigated standard pad-center point slurry dispensing and a slurry injection system (SIS) that covered only the outer half of the wafer track. Results indicated that the radial position of slurry injection and fluid interactions with the SIS greatly influenced slurry mixing and availability atop the pad. Silicon dioxide removal rates were also found to increase as slurry availability increased. Using a combination of standard pad-center slurry dispensing and a half-wafer track SIS resulted in similar silicon dioxide removal rates as standard pad-center slurry dispensing but at a 40% lower slurry flowrate. The final study in this thesis investigated the effects of ultrapure (UPW) water dilution of a ceria-based slurry on silicon dioxide removal rates. Results showed that pre-mixing the slurry and UPW increased the removal rate with dilution up to a slurry to UPW ratio of 1:7.5 due to the increasing presence of Ce3+ via the reduction of Ce4+ by UPW. Further dilution yielded a plateau in the removal rate trend as additional UPW reduced the coefficient of friction (COF) and the temperature during polishing, causing the benefits of increased ceria-silica binding to be offset by mechanical limitations. Mixing the slurry directly at point-of-use at the dispense nozzle resulted in a removal rate trend that was highly similar to pre-mixing, however, removal rates were higher at every dilution ratio. A novel slurry injection system (SIS) was employed at various rotation angles as measured from the leading edge. The SIS angles produced different retaining ring bow wave thicknesses, which led to varying extents of dilution and, by extension, removal rates. The SIS at -8° produced the highest removal rates of all angles. A third dilution ratio test was performed using point-of-use mixing through the SIS at the optimum angle of -8°, which resulted in a similar removal rate trend as pre-mixing and pad-center dispense point-of use mixing, but with dramatically higher removal rates at each dilution ratio. The ability to attain higher removal rates could potentially allow integrated circuit (IC) manufacturers to either reduce polishing times or reduce slurry consumption, subsequently reducing slurry waste and creating a more environmentally benign semiconductor manufacturing process.
12

Sedimentation of Organic - Inorganic Composites by Optical Turbidity

Harrinauth, Reshma K 04 November 2008 (has links)
Sedimentation is one of many characterization tools used to test materials in nanotechnology. Characterization of settling behavior is complex as there are many variables which can affect sedimentation. In our research, we focused on sedimentation in colloidal systems with the aid of an optical turbidometer. Nanoparticles of CeO2 (Ceria Oxide) and TiO2 (Titanium Dioxide) are embedded onto a polymeric matrix of a thermally responsive microgel of poly(N-isopropylacrylamide) (PNIPAM) and interpenetrating chains of poly(acrylic acid) to create novel composites. The composites are loaded with the inorganic oxide nanoparticles at different weight percent from a low value of 10 weight % to 75 weight %. The loading of the colloidal particles affects the sedimentation rate. In this thesis a turbidomenter is used to characterize the settling rate, which is an important characteristic for application of these new composites. TiO2 is a key constituent in many industrial products; cosmetics, paints, ceramics and used in waste water remediation. It is a potent photocatalyst which breaks down almost any organic compound when exposed to ultraviolet light. By combining nanoparticles of TiO2 with microgels of a polymer, the composites can facilitate use and recovery of the catalyst. Gravity settling of these loaded composites provides an easy separation of TiO2 nanoparticles. In this context, characterization of settling plays an important role. CeO2 composites are used to polish oxide coatings in the semiconductor industry and sedimentation of the composite particles is important as it can affect the efficiency of the planarization process. Therefore, measuring sedimentation of these composites is necessary. In this study, the settling behavior is measured optically for a variety of conditions that differ in loading of inorganic nanoparticles within the microgels, temperature of the solution, and concentration of particles in solution. The overall goal is to understand the sedimentation behavior of these novel composites and facilitate their use in industrial processes.
13

Oxygen Vacancy Chemistry in Ceria

Kullgren, Jolla January 2012 (has links)
Cerium(IV) oxide (CeO2), ceria, is an active metal oxide used in solid oxide fuel cells and for the purification of exhaust gases in vehicle emissions control. Behind these technically important applications of ceria lies one overriding feature, namely ceria's exceptional reduction-oxidation properties. These are enabled by the duality of the cerium ion which easily toggles between Ce4+ and Ce3+. Here the cerium 4f electrons and oxygen vacancies (missing oxygen ions in the structure) are key players. In this thesis, the nature of ceria's f electrons and oxygen vacancies are in focus, and examined with theoretical calculations. It is shown that for single oxygen vacancies at ceria surfaces, the intimate coupling between geometrical structure and electron localisation gives a multitude of almost degenerate local energy mimima. With many vacancies, the situation becomes even more complex, and not even state-of-the-art quantum-mechanical calculations manage to predict the experimentally observed phenomenon of vacancy clustering. Instead, an alternative set of computer experiments managed to produce stable vacancy chains and trimers consistent with experimental findings from the literature and revealed a new general principle for surface vacancy clustering. The rich surface chemistry of ceria involves not only oxygen vacancies but also other active oxygen species such as superoxide ions (O2−). Experiments have shown that nanocrystalline ceria demonstrates an unusually large oxygen storage capacity (OSC) and an appreciable low-temperature redox activity, which have been ascribed to superoxide species. A mechanism explaining these phenomena is presented. The ceria surface is also known to interact with SOx molecules, which is relevant both in the context of sulfur poisoning of ceria-based catalysts and sulfur recovery from them. In this thesis, the sulfur species and key mechanisms involved are identified.
14

An Investigation of the Electronic and Catalytic Properties of Ceria Nanocubes

2013 October 1900 (has links)
The focus of this thesis was on the synthesis, characterization and application of ceria nanocubes. This thesis is divided into two main sections; the first section investigates the electronic properties of ceria nanocubes, and the second explores their catalytic applications towards alcohol oxidation reactions. The first project of this thesis consisted of the X-ray characterization of hydrothermally synthesized ceria nanocubes of various sizes. For the first time, the electronic properties of such nanocubes were systematically studied using high resolution XPS and XANES. It was found that the concentration of Ce3+ present within the nanocubes was independent of the particle size, as well as the Ce precursor used during synthesis. Throughout the analysis of the Ce 3d and 4d XPS spectra, it was observed that the surface of the ceria nanocube samples was undergoing photoreduction/damage over time. This damage was attributed to the samples’ exposure to high intensity X-ray radiation. This was confirmed through examination of the Ce M4,5- and N4,5-edge XANES spectra. From these results, it was clear that the concentration of Ce3+ on the surface of the ceria nanocubes was independent of particle size. This fact may become important when investigating their potential catalytic activity. The second project of this thesis concentrated on the analysis of the catalytic activity of a variety of CeO2, Au and Au/CeO2 catalysts towards the oxidation of benzyl alcohol. The low temperature oxidation reactions were studied using 1H NMR spectroscopy. It was observed that Au NPs, Au/bulk CeO2, and Au/CeO2 nanocubes in water and K2CO3 were active catalysts for this oxidation reaction at 60°C in both air and O2 (g) atmospheres. Surprisingly, however, the Au/bulk CeO2 and Au/CeO2 nanocube catalysts showed very similar activities. It was also found that ceria nanocubes alone, and Au25(SR)18/bulk CeO2 showed no activity for this reaction under similar conditions. It was determined that below a substrate to catalyst ratio of ~ 1500:1, the Au/CeO2 catalysts, which showed the highest activities, were mass-transport limited with respect to the O2 in the system. The turnover frequencies of the supported catalysts were approximately double those of the unsupported NPs. Furthermore, these reactions have indicated that activating Au25(SR)18/CeO2 for catalysis is a non-trivial task, and more work needs to be done to understand the activation of such clusters.
15

FIRST-PRINCIPLES DENSITY FUNCTIONAL THEORY STUDIES OF REACTIVITIES OF HETEROGENEOUS CATALYSTS DETERMINED BY STRUCTURE AND SUBSTRATE

Cheng, Lei 01 December 2009 (has links)
In this dissertation, density functional theory (DFT) calculations were used to investigate (1)NO2 adsorption on BaO in NOx Storage Reduction (NSR) catalyst affected by the morphology of BaO and the γ-Al2O3 support, (2) energy barrier of H2 dissociative adsorption over Mg clusters affected by its electronic structure, and (3) comparison of the activities of CeO2 clusters affected by two different supports--monoclinic ZrO2 and non-spinel γ-Al2O3. Our results showed that the electronic effect caused by the non-stoichiometry of the bare BaO clusters and surfaces improves their reactivities toward NO2 adsorption greatly, whereas the geometric structure of the catalyst has only minor effect on the activity; we also found that the γ-Al2O3 substrate improves the reactivities of the supported BaO clusters and at the same time the interface between BaO and γ-Al2O3 provided a unique and highly reactive environment for NO2 adsorption. Hydrogen dissociation barrier over pure Mg clusters is greatly affected by the electronic structure of the clusters--closed shell clusters such as Mg10 and Mg92- have higher energy barrier toward H2 dissociation; however, H2 dissociation over clusters that are two electrons shy from the closed electronic shell are relatively easier. As substrates, neither ZrO2(111) nor γ-Al2O3(100) affects the reactivity of the supported Ce2O4 toward CO2 adsorption and CO physisorption significantly; whereas the reactivity of Ce2O4 toward CO reactive adsorption were found to be affected by the two substrates very differently.
16

Correlating Nanoscale Grain Boundary Composition with Electrical Conductivity in Ceria

January 2016 (has links)
abstract: Because of their favorable ionic and/or electronic conductivity, non-stoichiometric oxides are utilized for energy storage, energy conversion, sensing, catalysis, gas separation, and information technologies, both potential and commercialized. Charge transport in these materials is influenced strongly by grain boundaries, which exhibit fluctuations in composition, chemistry and atomic structure within Ångstroms or nanometers. Here, studies are presented that elucidate the interplay between macroscopic electrical conductivity, microscopic character, and local composition and electronic structure of grain boundaries in polycrystalline ceria-based (CeO2) solid solutions. AC impedance spectroscopy is employed to measure macroscopic electrical conductivity of grain boundaries, and electron energy-loss spectroscopy (EELS) in the aberration-correction scanning transmission electron microscope (AC-STEM) is used to quantify local composition and electronic structure. Electron diffraction orientation imaging microscopy is employed to assess microscopic grain boundary character, and links these macro- and nanoscopic techniques across length scales. A model system, CaxCe1-xO2-x-δ, is used to systematically investigate relationships between nominal Ca2+ concentration, grain boundary ionic conductivity, microscale character, and local solute concentration. Grain boundary conductivity varied by several orders of magnitude over the composition range, and assessment of grain boundary character highlighted the critical influence of local composition on conductivity. Ceria containing Gd3+ and Pr3+/4+ was also investigated following previous theoretical work predicting superior ionic conductivity relative to state-of-the-art GdxCe1-xO2-x/2-δ. The grain boundary conductivity was nearly 100 times greater than expected and a factor four enrichment of Pr concentration was observed at the grain boundary, which suggested electronic conduction that was cited as the origin of the enhanced conductivity. This finding inspired the development of two EELS-based experimental approaches to elucidate the effect of Pr enrichment on grain boundary conductivity. One employed ultra-high energy resolution (~10 meV) monochromated EELS to characterize Pr inter-bandgap electronic states. Alternatively, STEM nanodiffraction orientation imaging coupled with AC-STEM EELS was employed to estimate the composition of the entire grain boundary population in a polycrystalline material. These compositional data were the input to a thermodynamic model used to predict electrical properties of the grain boundary population. These results suggest improved DC ionic conduction and enhanced electronic conduction under AC conditions. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2016
17

Study on Metal Oxide Nanomaterials for Automotive Catalysts / 自動車用触媒における金属酸化物ナノ材料に関する研究

Imagawa, Haruo 23 May 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・論文博士 / 博士(工学) / 乙第12680号 / 論工博第4082号 / 新制||工||1548(附属図書館) / 29813 / (主査)教授 田中 庸裕, 教授 江口 浩一, 教授 安部 武志 / 学位規則第4条第2項該当
18

Fundamental Characterization of Chemical Mechanical Planarization Relating to Slurry Dispensing and Conditioning Method

Han, Ruochen, Han, Ruochen January 2017 (has links)
The first part of our study introduces a new method for rapidly generating an "improved" Stribeck curve (i.e. Stribeck+ curve) that, compared to traditional Stribeck curves, shows a more complete tribological picture of the chemical mechanical planarization (CMP) process. The method significantly reduces the consumables and time required to obtain the curve compared to traditional means. Results of the Stribeck+ curve are consistent with individual tests using several different consumables combinations. All copper CMP Stribeck+ examples clearly indicate the lubrication mechanism and transitions thereof between different polishing conditions. Variability in COF as well as a much wider range in U/P are also explored. In the second part of our study, the Stribeck+ curve is successfully applied to silicon dioxide CMP processes to characterize the tribology of such processes under different process conditions and consumables. Results show our Stribeck+ curve methodology to be capable of rapidly determining and differentiating the tribological mechanism among all cases studied. The Stribeck+ curve helps indicate process stability as shown by the spread of the COF vertical clusters. The Stribeck+ curve also confirms a previously known effect that the greater the ratio of pad’s up-features to the total pad area, the greater the probability of wafer hydroplaning. As the third part of our study, we investigate the effect of different pad surface micro-textures on the tribological, thermal and kinetic attributes during copper CMP. Different micro-textures are generated by two different chemical vapor deposited (CVD) diamond-coated conditioner discs (i.e. Disc A and Disc B). Results show that while pad temperature and removal rate increase with polishing pressure and sliding velocity on both discs, Disc B generates consistently lower removal rates and COF than Disc A. To fundamentally elucidate the cause(s) of such differences, pad surface contact area and topography are analyzed using laser confocal microscopy. The comparison of the pad surface micro-texture analysis indicates that Disc A causes a pad surface with a smaller abruptness (λ) and much more solid contact area which results in a higher removal rate. In contrast, Disc B generates less contact areas and COF. A two-step modified Langmuir–Hinshelwood model is employed to simulate copper removal rates as well as chemical and mechanical rate constants. The simulated chemical to mechanical constant ratios indicate that Disc A produces a more mechanically limited process under all conditions tested. In the fourth part of our study, the position of a slurry injection system (SIS) is optimized to achieve a more cost-effective and environmentally benign CMP process using a widely-adopted ceria-based "reverse slurry". Here, SIS is configured with different angles in order to investigate slurry dilution characteristics caused by residual pad rinsing with ultrapure water (UPW) that is known to affect silicon dioxide removal. UPW dilution effect on removal rate, coefficient of friction and pad surface temperature is explained by maintaining a constant dilution ratio for each of the SIS configuration tests. Results indicate that SIS negative rotation angles increase the actual slurry dilution ratio on top of the polishing pad. This generates more Ce3+ which boosts removal rates. Application of negatively rotated SIS allows significantly lower slurry flow rates and/or shorter polishing times leading to more environmental friendly semiconductor manufacturing processes. Finally, it is confirmed that variations in SIS configuration has no impact on silicon dioxide to silicon nitride removal rate selectivity. In the fifth and final part of our study, the silicon dioxide removal rate using a "reverse" ceria-based slurry is investigated under four different combinations of conditioning modes and slurry application methods. In a “reverse” slurry, addition of water acts to promote material removal. Overall, the process using ex-situ conditioning with the SIS results in the highest removal rate, while the process using in-situ conditioning with the conventional point application (PA) generates the lowest removal rate. This study explains the differences in silicon dioxide removal rate based on the variations of the actual slurry dilution ratio on the pad associated with conditioning and slurry application methods. Frictional analysis and Stribeck+ curves are employed to elucidate the tribological characteristics. Results show that the conditioning modes and the slurry application methods vary the extent of the polishing vibrations. Silicon dioxide removal rate is found to linearly correlate with the extent of COF fluctuation. The work underscores the importance of optimum slurry flow dynamics and injection geometry to obtain a more cost-effective and environmentally benign CMP process.
19

Synthesis Of Nano-Ce1-xMxO2-ﮤ(M=Cu, Ru, Rh, Pd And Pt) : Enhancement Of Redox-cataltic Activity Due To Mn+ -O2- - Ce4+ Ionic Interaction

Gayen, Arup 04 1900 (has links) (PDF)
No description available.
20

Desarrollo de catalizadores basados en Cu/ceria-zirconia para la combustión de carbonilla y eliminación de NOx en motores diésel

Giménez-Mañogil, Javier 09 September 2017 (has links)
No description available.

Page generated in 0.0266 seconds