• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 18
  • 7
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 24
  • 18
  • 16
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Větrání tělocvičny / Ventilation of sports hall

Urban, Ondřej January 2018 (has links)
The master thesis deals with flow modeling in the CFD program. By means of which the opti-mal version of the air distribution diffuser in the sports hall will be selected. The first variant will bring fresh air through textile diffusers. The second variant will bring fresh air through flooded large circular diffusers. The tested parameter of the indoor environment will be the flow velocity and the age of the air. The better-performing version will be processed as an implementation documentation.
62

Studium proudění nemísitelných kapalin / Study of the flow of immiscible liquids

Malá, Kateřina January 2020 (has links)
This thesis explores the topic of flow of two immiscible liquids in horizontal pipeline. For this purpose, the experimental apparatus has been set up, that allows to observe the flow of mixture through the transparent pipe. Moderately viscous oil and water (viscosity ratio: 52,81, density ratio: 0.86, interfacial tension: 41,64 mN/m) have been chosen for the experiment. Both fluids were introduced into the pipe through a T-junction. At the end of the apparatus, a mixture of liquids flowed into the separation tank, where both phases were separated. The separated oil was then reused for further measurements. The oil and water flow rates could be individually changed by use control valves, that led to identification of different flow regimes. These varied from stratified flows to fully dispersed ones as the mixture speed increased. All observed flow regimes were plotted in the flow map, that is a function of the inlet velocities of both fluids. For further analysis, a second type of flow map has been created that displays rates as a function of mixture velocity and phase volume fraction. Selected regime was also simulated using software ANSYS FLUENT. The VOF method was used to simulate multiphase flow. This thesis critically evaluates the results of the study and shows the direction for further research in the field of immiscible liquids flow.
63

Optimalizace vzduchotechniky wellness / OPTIMIZATION OF WELLNESS AIR CONDITION

Kysilka, Michal January 2013 (has links)
The theme of diploma thesis is a design optimization of air distribution in swimming-pool hall with regard to free water surface evaporation. This problem was solved according to determined criterions with the aid of CFD simulation. Experimental measurement part of the thesis deals with evaporation problems where own formula for this physical phenomenon is determined. This formula is compared with already known algorithms. Author suggests that such formula might be integrated in CFD software.
64

Pier Streamlining as a Bridge Local Scour Countermeasure and the Underlying Scour Mechanism

Li, Junhong, Li 23 May 2018 (has links)
No description available.
65

Development, validation and application of an effective convectivity model for simulation of melt pool heat transfer in a light water reactor lower head

Tran, Chi Thanh January 2007 (has links)
Severe accidents in a Light Water Reactor (LWR) have been a subject of the research for the last three decades. The research in this area aims to further understanding of the inherent physical phenomena and reduce the uncertainties surrounding their quantification, with the ultimate goal of developing models that can be applied to safety analysis of nuclear reactors. The research is also focusing on evaluation of the proposed accident management schemes for mitigating the consequences of such accidents. During a hypothetical severe accident, whatever the scenario, there is likelihood that the core material will be relocated and accumulated in the lower plenum in the form of a debris bed or a melt pool. Physical phenomena involved in a severe accident progression are complex. The interactions of core debris or melt with the reactor structures depend very much on the debris bed or melt pool thermal hydraulics. That is why predictions of heat transfer during melt pool formation in the reactor lower head are important for the safety assessment. The main purpose of the present study is to advance a method for describing turbulent natural convection heat transfer of a melt pool, and to develop a computational platform for cost-effective, sufficiently-accurate numerical simulations and analyses of Core Melt-Structure-Water Interactions in the LWR lower head during a postulated severe core-melting accident. Given the insights gained from Computational Fluid Dynamics (CFD) simulations, a physics-based model and computationally-efficient tools are developed for multi-dimensional simulations of transient thermal-hydraulic phenomena in the lower plenum of a Boiling Water Reactor (BWR) during the late phase of an in-vessel core melt progression. A model is developed for the core debris bed heat up and formation of a melt pool in the lower head of the reactor vessel, and implemented in a commercial CFD code. To describe the natural convection heat transfer inside the volumetrically decay-heated melt pool, we advanced the Effective Convectivity Conductivity Model (ECCM), which was previously developed and implemented in the MVITA code. In the present study, natural convection heat transfer is accounted for by only the Effective Convectivity Model (ECM). The heat transport and interactions are represented through an energy-conservation formulation. The ECM then enables simulations of heat transfer of a high Rayleigh melt pool in 3D large dimension geometry. In order to describe the phase-change heat transfer associated with core debris, a temperature-based enthalpy formulation is employed in the ECM (the phase-change ECM or so called the PECM). The PECM is capable to represent possible convection heat transfer in a mushy zone. The simple approach of the PECM method allows implementing different models of the fluid velocity in a mushy zone for a non-eutectic mixture. The developed models are validated by a dual approach, i.e., against the existing experimental data and the CFD simulation results. The ECM and PECM methods are applied to predict thermal loads to the vessel wall and Control Rod Guide Tubes (CRGTs) during core debris heat up and melting in the BWR lower plenum. Applying the ECM and PECM to simulations of reactor-scale melt pool heat transfer, the results of the ECM and PECM calculations show an apparent effectiveness of the developed methods that enables simulations of long term accident transients. It is also found that during severe accident progression, the cooling by water flowing inside the CRGTs plays a very important role in reducing the thermal load on the reactor vessel wall. The results of the CFD, ECM and PECM simulations suggest a potential of the CRGT cooling as an effective mitigative measure during a severe accident progression. / QC 20101119
66

Parní turbina rychloběžná kondenzační / High-speed Condesing Steam Turbine

Klíma, Petr January 2015 (has links)
ith one controlled extraction and one uncontrolled extraction, calculation of the flow channel at all stage, design and calculation of the regulation valve and create connection diagram of steam turbine and air cooled condenser. At the beginning of this work is an overview of manufacturers of steam turbines and their unified products. Master thesis was developer with G-Team, a.s. as using calculations and the instructions given in the recommended literature with supporting CFD simulations to determine the loss coefficients and FEA simulations to determine the eigenfrequencies blades.
67

Vliv zakončení výztužné lopatky u Francisovy turbíny na tvorbu Karmánových vírů / Influence of the Francis turbine stay vane trailing edge shape on generation of Karman vortex street

Novotný, Vojtěch January 2015 (has links)
In the flow past bluff bodies for a certain range of velocity a periodical vortex shedding emerges which is known as von Kármán vortex street. This phenomenon causes the periodical alteration of pressure field which affects the body. Should the vortex shedding frequency be similar to the body natural frequency, the amplitude of vibration significantly increases which can lead to fatigue cracking. In the case of water turbines, this phenomenon often affects the stay vanes. Both the vortex shedding frequency and the lift force amplitude can be influenced by the modification of the trailing edge geometry. The aim of this thesis is to use CFD computation in order to find the optimal geometry of the stay vane trailing edge for the specific Francis turbine unit.
68

Analýza působení větru na ocelové větrané opláštění / Analysis of The Effects of Wind on The Steel Ventilated Facade

Kloss, Tomáš January 2017 (has links)
This master´s thesis analyzes an effect of wind load on the ventilated facade claddings. The analysis is performed on the various types of facades, from unventilated to ventilated facades with a different geometrical arrangement of facade shell. The theoretical part describes the basic knowledge about the theory of flow, turbulence modeling, determining an optimal domain, verification of the calculation model and user interface in the ANSYS software. The final part compares the value of the wind load reduction depending on the change of the gap widths and the size of ventilated spaces. The resulting values are obtained by CFD simulations. The thesis includes a design and an assessment of the steel hall construction.
69

Radiale Diffusoren in Warmwasserspeichern: Einfluss des Beladesystems auf Strömungsverhalten und Schichtungsqualität

Findeisen, Fabian 19 April 2018 (has links)
Radiale Diffusoren beeinflussen signifikant die Qualität der thermischen Schichtung in Warmwasserspeichern. Um die Effizienz der Energiespeicherung zu verbessern, ist das Verständnis des komplexen Strömungsverhaltens notwendig. Diese Arbeit liefert Grundlagen zur Beschreibung der auftretenden Effekte und stellt ein geeignetes CFD-Simulationsmodell vor. Als Untersuchungsobjekt dient eine neuartige Speicherkonstruktion, wobei der Radialdiffusor direkt an einer schwimmenden Decke montiert ist. Vorteile dieser Anordnung werden aufgezeigt, die auftretenden Strömungseffekte beschrieben sowie der Einfluss verschiedener Beladergeometrien auf die thermische Schichtung untersucht. Für das Entladen bis 98 °C bei Atmosphärendruck wurde ein strömungsoptimierter Freiformdiffusor entwickelt, um Kavitation beim Ansaugen zu vermeiden. Die Untersuchungen zeigen außerdem, dass bei der Beladung über dem Umfang des Radialdiffusors ein stark asymmetrisches und einseitig gerichtetes Ausströmen auftreten kann. Gegenmaßnahmen in Form von Leit- und Lochblechen stellen ein nahezu symmetrisches Ausströmen wieder her und verbessern damit die Schichtungsqualität. Neben umfangreichen numerischen Studien mit RANS und LES fanden zahlreiche Experimente im Labor und an einem 100 m³-Speicher statt. / Radial diffusers have a significant influence on the quality of thermal stratification in hot water storage tanks. In order to improve the efficiency of energy storage, it is necessary to understand the complex flow behaviour. This thesis provides a basis for describing the effects and introduces a CFD simulation model. An innovative storage tank construction is used as the object of investigation, whereby the radial diffuser is mounted directly to a floating ceiling. Advantages of this arrangement are shown, flow effects are described and the influence of different loader geometries on the thermal stratification is investigated. For discharging up to 98 °C at atmospheric pressure, a flow-optimized free-form diffuser was developed to avoid cavitation inside the loading device. The tests also show that a highly asymmetrical and unidirectional flow over the circumference of the radial diffuser can occur during loading. Thanks to countermeasures like baffles and perforated plates, an almost symmetrical outflow can be restored and the stratification quality improved. In addition to numerical studies with RANS and LES, numerous experiments in the laboratory and at a 100m3 store were performed.
70

A study of blood flow in normal and dilated aorta

Deep, Debanjan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Atherosclerotic lesions of human beings are common diagnosed in regions of arte- rial branching and curvature. The prevalence of atherosclerosis is usually associated with hardening and ballooning of aortic wall surfaces because of narrowing of flow path by the deposition of fatty materials, platelets and influx of plasma through in- timal wall of Aorta. High Wall Shear Stress (WSS) is proved to be the main cause behind all these aortic diseases by physicians and researchers. Due to the fact that the atherosclerotic regions are associated with complex blood flow patterns, it has believed that hemodynamics and fluid-structure interaction play important roles in regulating atherogenesis. As one of the most complex flow situations found in cardio- vascular system due to the strong curvature effects, irregular geometry, tapering and branching, and twisting, theoretical prediction and in vivo quantitative experimental data regarding to the complex blood flow dynamics are substantial paucity. In recent years, computational fluid dynamics (CFD) has emerged as a popular research tool to study the characteristics of aortic flow and aim to enhance the understanding of the underlying physics behind arteriosclerosis. In this research, we study the hemo- dynamics and flow-vessel interaction in patient specific normal (healthy) and dilated (diseased) aortas using Ansys-Fluent and Ansys-Workbench. The computation con- sists of three parts: segmentation of arterial geometry for the CFD simulation from computed tomography (CT) scanning data using MIMICS; finite volume simulation of hemodynamics of steady and pulsatile flow using Ansys-Fluent; an attempt to perform the Fluid Structure Simulation of the normal aorta using Ansys-Workbench. Instead of neglecting the branching or smoothing out the wall for simplification as a lot of similar computation in literature, we use the exact aortic geometry. Segmen- tation from real time CT images from two patients, one young and another old to represent healthy and diseased aorta respectively, is on MIMICS. The MIMICS seg- mentation operation includes: first cropping the required part of aorta from CT dicom data of the whole chest, masking of the aorta from coronal, axial and saggital views of the same to extract the exact 3D geometry of the aorta. Next step was to perform surface improvement using MIMICS 3-matic module to repair for holes, noise shells and overlapping triangles to create a good quality surface of the geometry. A hexahe- dral volume mesh was created in T-Grid. Since T-grid cannot recognize the geometry format created by MIMICS 3-matic; the required step geometry file was created in Pro-Engineer. After the meshing operation is performed, the mesh is exported to Ansys Fluent to perform the required fluid simulation imposing adequate boundary conditions accordingly. Two types of study are performed for hemodynamics. First is a steady flow driven by specified parabolic velocity at inlet. We captured the flow feature such as skewness of velocity around the aortic arch regions and vortices pairs, which are in good agreement with open data in literature. Second is a pulsatile flow. Two pulsatile velocity profiles are imposed at the inlet of healthy and diseased aorta respectively. The pulsatile analysis was accomplished for peak systolic, mid systolic and diastolic phase of the entire cardiac cycle. During peak systole and mid-systole, high WSS was found at the aortic branch roots and arch regions and diastole resulted in flow reversals and low WSS values due to small aortic inflow. In brief, areas of sudden geometry change, i.e. the branch roots and irregular surfaces of the geom- etry experience more WSS. Also it was found that dilated aorta has more sporadic nature of WSS in different regions than normal aorta which displays a more uniform WSS distribution all over the aorta surface. Fluid-Structure Interaction simulation is performed on Ansys-WorkBench through the coupling of fluid dynamics and solid mechanics. Focus is on the maximum displacement and equivalent stress to find out the future failure regions for the peak velocity of the cardiac cycle.

Page generated in 0.0746 seconds