• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1113
  • 219
  • 191
  • 189
  • 92
  • 52
  • 44
  • 31
  • 28
  • 21
  • 9
  • 9
  • 9
  • 8
  • 6
  • Tagged with
  • 2501
  • 711
  • 682
  • 506
  • 469
  • 466
  • 352
  • 281
  • 248
  • 202
  • 193
  • 190
  • 179
  • 176
  • 176
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Application of the interfoam VoF code to coastal wave/structure interaction

Morgan, Gerald C. J. January 2013 (has links)
The validation of the “interFoam” CFD model (part of the OpenFOAM) CFD library is described for a number of wave/structure interaction problems. The background to the research is described, including the reasons for the selection of a new, previously unvalidated CFD code for this purpose. The numerical aspects of the code are briefly reviewed as are some of its additional features including the simulation of porous media. The new wave-generating boundary condition, created as part of this project, is described. The model is validated for the propagation of waves, including violent, breaking waves, using the widely-known “Dingemans” test case as well as new data for wave and focussed wave group propagation over a bar. The model is validated for wave interaction with surface-piercing structures by examining a test case for focussed wave-group impact on a surface-piercing cylinder with one near-breaking wave and a second, breaking, wave. The model is shown to perform well in these cases without the need for calibration and can therefore be considered to be a valuable design tool. It is also shown that in these cases the model can run sufficiently fast to be practical and economic for use as a design tool. The model is validated for porous media with a case examining porepressure transmission through a porous breakwater. The model performs poorly without calibration, highlighting the high levels of uncertainty in the Darcy parameter, but once calibrated is found to produce accurate results in very reasonable time. A case study of a porous roundhead defence structure is also presented to further reinforce the practical usefulness of the model in design.
132

CFD study of the intra and inter particles transport phenomena in a fixed-bed reactor

Troupel, Alexandre 28 May 2009 (has links)
"Actual models for fixed-bed reactor modeling make this assumption that temperature is uniform, or at least symmetric, within the catalytic pellets. However, if this holds true for large beds (tube-to-particle diameter ratio N greater than 10), it appears that for small N tubes (N = 3-10) that wall effects cannot be neglected anymore. A large temperature gradient appears in the near wall region. Hence for a particle at the wall a variation in temperature of up to 50¢ªC was noticed. This temperature change was investigated, and it has been noticed that the proximity to the wall, but also to a low velocity region could explain a maximum in temperature. Furthermore, species concentration discrepancies were also notice. An adiabatic run was made to show that these were not due to heated wall effects. Instead it appeared that these concentration variations are due to both their proximity to a low flow region and to a confined area. Hence incoming diffusion in these zones appeared to be lower than for the rest of the surface. We also could notice a strong impact of the flow on the temperature patterns in the near wall regions. Hence in our case, it appeared that the 4 holes geometries allowed a better flow in front the particle at the flow, and therefore better transport phenomena. On the contrary, the full cylinder geometry tend to block the flow, consequently temperature on the wall particles were hotter than what they were with the 4 holes cylinder geometry. A study of the diffusion within the catalytic particles was also conducted. Hence, the Maxwell-Stefan, the dusty gas and the binary friction models were implemented in Fluent. The goal here is to refine step by step the diffusion model used. First products and reactants molar fluxes were assumed to be proportional. The next step was to compute the actual molar fluxes; however this added one more parameter to converge; that is the diffusion coefficient. Finally the assumption of negligible pressure variation within the pellets was dropped. Unfortunately, the implementation into Fluent was not successful, and few possible reasons were given. "
133

Evaluation of the Classical Reaction Engineering models in terms of mass transport and reaction rate distribution for low tube-to-particle diameter ratio beds.

Allain, Florent 27 April 2011 (has links)
Packed bed reactors are widely used in the chemicals industry and have been studied carefully in the last century. Several reaction engineering models have been developed in order to predict the behavior of such reactors under specified conditions, in order to assist in the sizing during an industrial process conception. These reactors can be categorized using different parameters, and the bed-to- particle diameter ratio - N - is one of them. It has been shown that this parameter influences greatly the transfer phenomena that occur in the bed, and that for ratios under 10, particular attention is needed when considering the wall effects. An impor- tant point that has to be evaluated is the accuracy of the actual chemical reaction engineering models when simulating such beds as it is valid to question the hypoth- esis of a pseudo-continuum model when considering a low bed-to-particle diameter ratio bed. Through high precision Computational Fluid Dynamics calculations, several beds of particles are modeled and studied in term of mass dispersion and reaction rate distribution. Two reaction engineering models - a simple pseudo-continuum model with effectiveness factor, and a model we refer to as "Single pellet" model - and several correlations regarding Peclet numbers are then evaluated under the same conditions in order to determine their accuracy and reliability for that particular kind of bed. Two beds of N = 5.96 and N = 7.99 are studied for dispersion phenomena, and the bed of N = 5.96 is studied for reaction rate distribution. It is shown that the pseudo- continuum model of dispersion stands valid for the higher N, but that none of the correlations we used were able to correctly predict the behavior of the N = 5.96 bed at any of the Reynolds number we considered, only giving close behaviors. We were confronted with some difficulties regarding the reaction simulation under Fluent, but some comparisons were successfully made regarding species and reaction rate distribution in the bed.
134

The use of computational fluid dynamics to simulate the flow in a high recirculation airlift reactor

de Souza, Althea Caroline January 2000 (has links)
No description available.
135

Modelling brain temperatures in healthy patients and those with induced hypothermia

Blowers, Stephen John January 2018 (has links)
Hypothermia has been shown to provide protective benefits to the brain after head trauma. Current treatment methods employ full body hypothermia which can lead to further associated complications, such as a compromised immune system. Alternatively, cooling the brain individually can provide the same benefits whilst minimising the risks associated. Unfortunately, the feasibility of this is still uncertain due to the invasiveness of measuring cerebral temperatures directly and the unavailability of brain temperature maps. Mathematical modelling provides an important alternative avenue for predicting the outcome of hypothermic procedures, such as scalp cooling. However, these tend to rely on Pennes Bioheat Equation which simplifies the blood flow within the system as a single perfusion term. This removes any directional thermal advection which could play an important part in biological heat transfer. In this thesis, an alternative method is developed, tested, and proposed where the full cerebral circulatory system is modelled using vascular channels embedded in a porous tissue simulating the blood vessels and capillaries, respectively. This is dubbed the vascular porous (VaPor) method. This dissertation tests and discusses the feasibility of inducing hypothermia by cooling the scalp using the VaPor model. Initially, the blood vessels were modelled in 3D to fully capture the effects of flow, however, this was deemed computationally inefficient and difficult to manipulate so was subsequently replaced with a system of 1-Dimensional line segments. Temperatures produced from this method conform to expected ranges of values and agree with available data from studies in rat brains. It was observed that core brain temperatures can be impacted by scalp cooling but only with a large number of generated vessels. This is due to the tortuous nature of the vasculature which is not captured by the porous media alone. Various input parameters are also tested to ensure the validity of results from this model. One tested parameter that did not agree with in-vivo results was the measurement of tissue perfusion which appeared to be grossly exaggerated by the VaPor model, although conservation of mass was conserved at each stage. This was investigated further by simulating tracer transport in the cerebral domain in the same manner that in-vivo measurements use. While in-vivo measurements and the predictions by tracer transport produce perfusion values of the same order of magnitude, a full quantitative match cannot be expected because of the differences in the measurement techniques used. Various approximations that can be imposed to resolve this are discussed. The versatility of the VaPor model was explored by simulating a variety of applications relevant to cerebral cooling. The inclusion of counter-current flow within the porous domain showed similar results to trials performed with dense vascular trees. Trials on the scale of a neonatal brain showed that hypothermia could be achieved from scalp cooling alone contrary to previous models. The transient response of scalp cooling was explored as well as the thermal response after simulating an ischemic stroke. All results demonstrated that, due to the inclusion of directional flow, scalp cooling has a larger impact on cerebral temperatures than seen with previous bioheat models.
136

Stoker boiler CFD modeling improvements through alternative heat exchanger modeling

Depman, Albert J., III 01 May 2014 (has links)
Accurate models and realistic simulations are essential in developing cleaner and more efficient coal- and biomass-fired boilers. Using the CFD simulation software Fluent The University of Iowa created a model of an industrial boiler that adequately compares the practice of co-firing biomass and coal against firing only coal. The simulations used in this comparison, show significant circulation zones and an unrealistic temperature profile inside the boiler heat exchanger region. This model is effective for comparing the relative decrease in emissions when co-firing with biomass versus exclusively coal combustion, but it does not present a realistic simulation of biomass or coal combustion. The purpose of the current work is to develop a more realistic baseline coal combustion model. Calculations for the proximate and ultimate analysis of coal, as well as properties necessary for energy and mass flux computations, have been updated in the current model. The fuel bed model - a simple two-dimensional distribution of energy and mass fluxes from the grate - was kept the same due to the complexities of fuel bed modeling. Simulation boundary conditions and flow models were tested and modified to determine the most realistic model settings. The geometry and mesh grid of the boiler model were also varied in an attempt to fix problematic areas. Several approaches were implemented in an effort to reduce the circulation zones and generate a realistic temperature profile. The negative energy source term in the boiler representing the energy removed by the water pipes in the heat exchanger was analyzed, and different configurations of this sink were tested. Finally, the heat exchanger models built in to Fluent were studied and implemented. These models proved to be the most effective in reducing recirculation zones and decreasing high temperature gradients. While the current model of the coal-fired boiler has a higher overall temperature than the previous one, circulation zones are almost completely eliminated, the flow path has been improved, and the temperature profile in the boiler is more realistic.
137

Drag Estimations on Experimental Aircraft Using CFD

Hardie, Staffan January 2007 (has links)
<p>The drag approximations done in the initial design phase needed to be verified. A model of the aircraft has been analyzed with CFD and results examined to see how accurate the estimations were. A step by step analysis was made and then a simulation was run. The drag results of the CFD analysis did not meet the goal of the initial design study. Several reasons for this are discussed. The analysis shows that the aircraft design works well aerodynamically but also shows a few areas where the design can be improved.</p> / <p>Det approximerade värdet på luftmotståndet som gjordes I den preliminära designfasen behövde verifieras. En flygplansmodell har analyserats med CFD och resultaten har undersökts för att se hur exakta antagandena var. En analys gjordes steg för steg och slutligen har en simulering utförts. Det uppmätta luftmotståndet motsvarade inte målet i den preliminära designfasen. Flera olika anledningar till detta diskuteras. Analysen visar att denna flygplansdesign fungerar bra aerodynamiskt men identifierar också en del punkter på vilken den kan förbättras.</p>
138

Improving of the heat transfer from a moulding block in an industrial oven

Rafart, Jordi January 2008 (has links)
<p>This thesis presents a study of the cooling process of a solid block performed by a turbulent air flow channel. The study focuses on the turbulent flow and its influence in the heat transfer of the block.</p><p>The first part of the thesis is an analysis of the different turbulent model and their adaptation on the necessities of this study. Once the turbulent model has been confirmed it makes a study of the behavior of the cooling process by CFD (Computational Fluid Dynamics), and an analysis of the numerical accuracy of this computational study.</p><p>When the procedure of the study of the cooling process is defined it proposes some different variations in the initial solution to improve this process. The study concentrates in variations of the turbulence and the geometry of the studied block.</p><p>Finally, the different improving are discussed analyzing parameters as the heat transfer, pressure drop, time consuming or energy consuming.</p>
139

CREATION OF A MODEL FOR THE STUDY OF THE VENTILATION AIR DIFFUSION OF THE FALUN HOSPITAL : a CFD Based Integrated Approach

FERRI, JUAN CARLOS, MARIN, SAMUEL January 2008 (has links)
<p>The main aim of the project is the creation of a CFD model for a plant in the Falun Hospital in Sweden. CFD is a new area of engineering that appears because of the great improvement in the computers last years. Creating a CFD model is a difficult process but the model is capable to give a great amount of data and also the model allows predicting the results when parameters of the system are changed so the model lets to save money and time and becomes an interesting tool to choose the optimal solution for the system.</p><p>In this case the system studied is the air distributed by the ventilation system inside a plant of the Falun Hospital. The model have to predict the characteristics of the airflows inside the plant, how the air moves through the different areas of the plant and how these airflows affects in the distribution of temperature inside the plant.</p><p>Also the model has to become a use tool to analyze possible changes in the ventilation system to improve it. And a tool to get boundary conditions to study specific areas of this zone in future studies.</p><p>The project its part of a bigger project performed by the department of energy technology from Gävle university “Consequences in comfort and inside environment at energy optimization within the health care sector”. The project it is a study of the use of energy in health care buildings in Sweden after the analysis of the energy usage a study to optimize the use of the energy and how these changes affects the patient and workers climate comfort in these buildings.</p><p>The CFD model have to be a tool that helps in the study of the ventilation system and the relation with the comfort in the Falun Hospital and also a tool to choose an optimal solution for the ventilation system after changes to improve the energy usage in the building avoiding the use of experimental changes in the hospital.</p>
140

CFD-simulering av luft- och temperaturflöde i ett apparatskåp

Svedjeland, Magnus January 2004 (has links)
No description available.

Page generated in 0.0369 seconds