• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 405
  • 227
  • 174
  • 40
  • 33
  • 17
  • 14
  • 9
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1095
  • 221
  • 213
  • 188
  • 154
  • 137
  • 121
  • 97
  • 93
  • 93
  • 91
  • 82
  • 80
  • 71
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Bringing order out of chaos : an examination of continuity and discontinuity in young children's experiences of household and classroom chaos during early childhood

Bobbitt, Kaeley Celeste 10 March 2015 (has links)
Early childhood—a period of development that research has established as a critical period for establishing a foundation to support later development and well-being—is increasingly likely to take place in multiple contexts. Continuity and discontinuity in children’s exposure to environmental chaos across two important contexts for their early development: (1) the home and (2) the early learning and care (ELC) setting were examined using data from a large representative sample of low-income preschool children attending Head Start in order to determine how children’s exposure to chaos in each context combine to either promote or interfere with their social-emotional and cognitive development over a year of preschool. A series of multi-level models tested whether children’s experiences of chaos, operationalized in three ways: (1) as individual indicators of crowding, lack of routines, and instability in each setting; (2) as a cumulative index of chaos in each setting; and (3) as a profile that incorporated children’s experiences across setting, influenced children’s social-emotional and cognitive development. Both household and classroom chaos predicted children’s development, but children’s experiences in their home environments were the predominant influence, indicating that children who had non-chaotic home environments gained more over the preschool year than did children who had chaotic homes. These findings provide additional support that effective and high-quality early education and care settings must incorporate children’s home and family experiences. / text
102

Η τοπική γεωμετρία των χαοτικών μπιλλιάρδων / The local geometry of chaotic billiards

Χαρμπίλα, Βασιλική 09 September 2009 (has links)
Η παρούσα διατριβή έχει ως θέμα της το κβαντικό χάος σε μπιλλιάρδα. Ειδικότερα, εισάγεται ένας μετασχηματισμός (Μετασχηματισμός Εφελκυσμού), ο οποίος προβάλλει το σύνορο ενός μπιλλιάρδου πάνω στον μοναδιαίο κύκλο. Αυτό εισάγει μια μη-Ευκλείδια μετρική στο επίπεδο και έναν διαφορικό τελεστή, ο οποίος περιέχει όλη την πληροφορία σχετικά με το σχήμα του συνόρου και τις ιδιότητες, ως προς την ολοκληρωσιμότητα ή μη, του μπιλλιάρδου. Κλασικά οι ευθείες γραμμές της ελεύθερης κίνησης αντιστοιχούν σε γεωδαισιακές, και κβαντομηχανικά το ενεργειακό φάσμα είναι αυτό του τελεστή Laplace-Beltrami με Dirichlet συνοριακές συνθήκες στον μοναδιαίο κύκλο. Οι γεωδαισιακές εξισώσεις είναι μη-γραμμικές, ομως στο διάστημα μεταξύ δύο διαδοχικών σκεδάσεων υπάρχουν δύο ολοκληρώματα κίνησης, αυτό της κινητικής ενέργειας και αυτό της στροφορμής, οπότε είναι δυνατή η λύση τους. Οι λύσεις αυτές μπορούν να χρησιμοποιηθούν στο κλασικό πρόβλημα σκέδασης. Κβαντικά παίρνουμε το φάσμα των μπιλλιάρδων: Έλλειψη, στάδιο, Robnik και τετράγωνο, για διάφορες τιμές μιας παραμέτρου διαταραχής. Το φάσμα υπολογίζεται διαταρακτικά για μικρές τιμές της παραμέτρου διαταραχής και με διαγωνοποίηση για πιο μεγάλες τιμές της. Η μέθοδος αυτή μπορεί να εφαρμοστεί σε οποιοδήποτε σχήμα συνόρου μπιλλιάρδου, αρκεί ο μετασχηματισμός να είναι αντιστρέψιμος, και μπορεί να χρησιμοποιηθεί σαν ένας γρήγορος τρόπος προσδιορισμού του φάσματος καθώς και σαν ένα θεωρητικό εργαλείο για την ανάλυση θεμελιακών ιδιοτήτων της ολοκληρωσιμότητας, του χάους και της ενδιάμεσης αυτών περιοχής, μέσω του τελεστή Laplace-Beltrami. Σαν ένδειξη των δυνατοτήτων της μεθόδου παραθέτουμε ένα γραφικό τεστ, όπου για πολύ μικρές αποκλίσεις από τον μοναδιαίο κύκλο ένα ολοκληρώσιμο και δύο εν-δυνάμει χαοτικά μπιλλιάρδα διακρίνονται καθαρά μεταξύ τους από τις κατανομές των διαφορών της διόρθωσης πρώτης τάξης στην ενέργεια. Το τεστ αυτό εμφανίζεται για πρώτη φορά στη βιβλιογραφία και έρχεται να συμπληρώσει την γνωστή κατανομή αποστάσεων εγγυτάτων γειτόνων, η οποία για τόσο μικρές αποκλίσεις από το κυκλικό μπιλλιάρδο δεν καταφέρνει να διαχωρίσει τα ολοκληρώσιμα από τα μη-ολοκληρώσιμα σχήματα. Τέλος εισάγεται η έννοια του ανοικτού μπιλλιάρδου, στο οποίο θεωρείται ότι το σύνορο βρίσκεται στο άπειρο. Τα ανοικτά μπιλλιάρδα αν και είναι ολοκληρώσιμα, περιέχουν εντούτοις την πληροφορία για την ολοκληρωσιμότητα ή μη των αντιστοίχων κλειστών σχημάτων. Για την εξαγωγή της τελευταίας πληροφορίας χρησιμοποιούνται διάφοροι μέθοδοι όπως συναρτήσεις αυτο- και ετερο- συσχέτισης. / For a billiard of a general shape a transformation is introduced (Stretching Transformation) which projects the boundary on the unit circle. This introduces a non-Euclidean metric on the plane, which contains all relevant information of the shape of the boundary. Classically the straight lines of the free motion correspond to geodesics and quantum mechanically the energy spectrum is that of Laplace-Beltrami operator with Dirichlet boundary conditions on the unit circle. The geodesic equations are highly non-linear. Nevertheless for the interval between two consecutive scatterings we have two integrals of motion, the kinetic energy and the angular momentum. This fact helps to solve explicitly the geodesic equations. These solutions can be used to derive interesting properties for the classical scattering. Quantum mechanically the spectrum of the above billiards is obtained for certain parameter values both perturbatively for small values of the parameter and also using a diagonalisation procedure. This method is applicable to any particular form of a billiard for which the transformation is invertible and can be used on one hand as a quick method of approximate spectral determination and as a theoretical tool to analyze specific properties of integrability and chaos through the associated connection form and the Laplace-Beltrami operator. As aν indication of the potentiality of this method we present a graphical test where for very small deviations from the circular billiard an integrable and two non-integrable billiards can be distinguished by the distribution of the differences of the first order corrections while this distinction is not evident by the usual test for the nearest neighbor level spacing. Furthermore the open billiard concept is being introduced. An open billiard is one whose boundary is assumed to be at infinity, thus being classified as an integrable billiard, which contains nevertheless the information about potential non-integrability within. Various methods for the extraction of this hidden information are being investigated.
103

Atom optics experiments in quantum chaos

Oskay, Windell Haven 30 March 2011 (has links)
Not available / text
104

Stability and Mobility of Localized and Extended Excitations in Nonlinear Schrödinger Models

Öster, Michael January 2007 (has links)
This thesis is mainly concerned with the properties of some discrete nonlinear Schrödinger equations. These naturally arise in many different physical contexts as the limiting form of general dynamical lattice equations that incorporate nonlinearity and coupling. Interest is focused on theoretical models of coupled optical waveguides constructed from materials with a nonlinear index of refraction. In arrays of waveguides the overlap of the evanescent electric field of the modes in neighbouring waveguides provides a coupling and the nonlinearity of the material provides a mechanism to halt the discrete diffraction that otherwise would spread localized energy across the array. In particular, waveguide structures where also a nonlinear coupling is taken into account are studied. It is noted that the equation for the evolution of the complex amplitudes of the electric field along an array of waveguides also can be used to describe the dynamics of Bose-Einstein condensates trapped in a periodic optical potential. Possible excitations in arrays in both one and two dimensions are considered, with emphasis on the effects of the nonlinear coupling. Localized excitations are considered from the viewpoint of the theory of discrete breathers, or intrinsic localized modes, i.e., solutions of the dynamical equations that are periodic in time and have a spatial localization. The general theory of such solutions, that appear under very general circumstances in nonlinear lattice equations, is reviewed. In an array of waveguides this means that light can propagate along the array confined essentially to one or a few waveguides. In general a distinction is made between excitations that are centred on a waveguide, or site in the lattice, and excitations that are centred inbetween waveguides. Usually only the former give stable propagation. When the localized beam can be displaced to neighbouring waveguides the array can operate as an optical switch. With the inclusion of nonlinear coupling between the sites, as in the model derived in this thesis, the stability of the site-centred and bond-centred solutions can be exchanged. It is shown how this leads to the existence of highly localized mobile solutions that can propagate transversely in the one-dimensional array of waveguides. The inversion of stability of stationary solutions occurs also in the two-dimensional array, but in this setting it fails to give good mobility of localized excitations. The reason for this is also explained. In a two-dimensional lattice a discrete breather can have the form of a vortex. This means that the phase of the complex amplitude will vary on a contour around the excitation, such that the phase is increased by 2πS, where S is the topological charge, on the completion of one turn. Some ring-like vortex excitations are considered and in particular a stable vortex with S=2 is found. It is also noted that the effect of charge flipping, i.e., when the topological charge periodically changes between -S and S, is connected to the existence of quasiperiodic solutions. The nonlinear coupling of the waveguide model will also give rise to some more exotic and novel properties of localized solutions, e.g., discrete breathers with a nontrivial phase. When the linear coupling and the nonlinear coupling have opposite signs, there can be a decoupling in the lattice that allows for compact solutions. These localized excitations will have no decaying tail. Of interest is also the flexibility in controlling the transport of power across the array when it is excited with a nonlinear plane wave. It is shown how a change of the amplitude of a plane wave can affect the magnitude and direction of power flow in the array. Also the continuum limit of the one-dimensional discrete waveguide model is considered with an equation incorporating both nonlocal and nonlinear dispersion. In general continuum equations the balance between nonlinearity and dispersion can lead to the formation of localized travelling waves, or solitons. With nonlinear dispersion it is seen that these solitons can be nonanalytic and have discontinuous spatial derivatives. The emergence of short-wavelength instabilities due to the simultaneous presence of nonlocal and nonlinear dispersion is also explained.
105

Nonlinear equilibration of fast dynamics

Maksymczuk, J. January 2000 (has links)
No description available.
106

Fault Detection in Dynamic Systems Using the Largest Lyapunov Exponent

Sun, Yifu 2011 May 1900 (has links)
A complete method for calculating the largest Lyapunov exponent is developed in this thesis. For phase space reconstruction, a time delay estimator based on the average mutual information is discussed first. Then, embedding dimension is evaluated according to the False Nearest Neighbors algorithm. To obtain the parameters of all of the sub-functions and their derivatives, a multilayer feedforward neural network is applied to the time series data, after the time delay and embedding dimension are fixed. The Lyapunov exponents can be estimated using the Jacobian matrix and the QR decomposition. The possible applications of this method are then explored for various chaotic systems. Finally, the method is applied to some real world data to demonstrate the general relationship between the onset and progression of faults and changes in the largest Lyapunov exponent of a nonlinear system.
107

Literary texts as nonlinear patterns : a chaotics [sic] reading of "Rainforest", "Transparent things", "Travesty", and "Tristram Shandy /

Werner, Hans C. January 1900 (has links)
Doct. diss.--Göteborg--Göteborgs universitet, 1998. / Résumé. Bibliogr. p. 177-182.
108

Οι εκθέτες Lyapunov και ο αριθμητικός υπολογισμός τους

Τσαπικούνη, Αγγελική 26 August 2010 (has links)
Στην παρούσα διπλωματική εργασία, μελετάμε την έννοια και σημασία των εκθετών Lyapunov μέσω μεθόδων ανάλυσης πειραματικών δεδομένων που εφαρμόζονται στην φυσική, στην γεωλογία, στην αστρονομία, στην νευροβιολογία, στην οικολογία και στα οικονομικά. Οι εκθέτες Lyapunov παίζουν πολύ σημαντικό ρόλο στην ανίχνευση χάους, το οποίο εμφανίζεται σε πολλούς τομείς της επιστήμης και της τεχνολογίας. Άρα, το θέμα τους ανήκει στην θεωρία των χαοτικών δυναμικών συστημάτων αλλά και γενικότερα όλων των δυναμικών συστημάτων, τα οποία πρέπει να αναλυθούν σωστά και με ακρίβεια για να πάρουμε τα σωστά συμπεράσματα όσον αφορά τους εκθέτες Lyapunov. Σκοπός της μελέτης είναι η εύρεση των εκθετών Lyapunov για διάφορα δυναμικά συστήματα και η εξήγηση των αποτελεσμάτων όσον αφορά την δυναμική συμπεριφορά του κάθε συστήματος. Επίσης, παρουσιάζονται εφαρμογές στην επιστήμη όπου οι εκθέτες Lyapunov παίζουν σημαντικό ρόλο και εξηγούνται οι κυριότεροι αλγόριθμοι υπολογισμού αυτών των εκθετών υπό διαφορετική υλοποίηση και σε διαφορετικά υπολογιστικά πακέτα, όπως το Matlab, το Mathematica και ακόμα σε γλώσα προγραμματισμού C με σκοπό την εύρεση του καλύτερου και πιο ακριβή αλγόριθμου. Επιπρόσθετα, παρουσιάζονται τα συμπεράσματα μετά την ανάλυση όλων των αλγορίθμων και των αποτελεσμάτων και προτείνεται ο καλύτερος και αποτελεσματικότερος αλγόριθμος όσον αφορά την απόδοση, τον χρόνο εκτέλεσης, αλλά και το μέγεθος των σφαλμάτων. Στο τέλος, υπάρχει παράρτημα με επιμέρους κώδικες που χρησιμοποιούνται, όπως ακόμα και η βιβλιογραφία από την οποία αντλήθηκαν πολύ σημαντικές πληροφορίες. / In this paper, we study the meaning and importance of Lyapunov exponents through experimental data analysis methods applied in physics, geology, astronomy, neurobiology, ecology and economics. The Lyapunov exponents play an important role in the detection of chaos, which occurs in many areas of science and technology. So, their issue concerns the theory of chaotic dynamical systems and generally all dynamical systems, which must be analyzed properly and accurately to get the right conclusions for the Lyapunov exponents. The purpose of this paper is to find the Lyapunov exponents for various dynamical systems and the explanation of the results concerning the dynamic behavior of each system. Also, several applications in science are presented where Lyapunov exponents play an important role and the main algorithms, which calculate these exponents under different implementation and in different computer packages such as Matlab, Mathematica, and even in programming language C, are explained to find the best and most accurate algorithm. Additionally, conclusions are drawn after analyzing all the algorithms and the results and it is suggested the best and most efficient algorithm regarding the performance, the execution time and also the magnitude of errors. In the end, there is an appendix with individual codes which are used, as even the bibliography from which very important information are derived.
109

Structural Evolution of the Virgin Spring Phase of the Amargosa Chaos, Death Valley, California, USA

Castonguay, Samuel 10 October 2013 (has links)
The Amargosa Chaos and Fault of Death Valley are complex features that play important roles in various tectonic models. Some recent models claim the fault is a regional detachment accommodating 80 km of NW-directed transport that produced the Chaos in its hangingwall. I offer an alternative interpretation: the chaos is a product of multiphase deformation that likely spanned the late Mesozoic and Cenozoic. The Amargosa Fault represents just one of six deformation events. The accompanying map (supplemental file) shows the cross-cutting relationships among fault populations: (D1) 25% north-northwest directed shortening across an imbricate thrust and tight fold system; (D2) E-SE extension on five normal faults; (D3) extension-related folding, which folded the D2 faults; (D4) normal-oblique slip on the Amargosa Fault; (D5) E-W extension on domino faults; (D6) extension on the Black Mountains Frontal Fault. The D2 faults, not the Amargosa, created the enigmatic attenuation observed in the Chaos.
110

Transporte de partículas induzido por ondas de deriva / Particle transport induced by drift waves

Francisco Alberto Marcus 23 November 2007 (has links)
Nesta tese, investigamos o transporte caótico de partículas por ondas de deriva ressonantes na borda do plasma em tokamaks com fluxo poloidal de deriva do tipo ~E × ~B, um problema crítico para compreender, na fusão, as propriedades de confinamento dos plasmas. Usamos, para tokamaks com grande razão de aspecto, um modelo hamiltoniano não integrável (proposto por Horton) para descrever a contribuição dinâmica não linear ao transporte. Assim, embora o fluxo total, composto pelo fluxo de equilíbrio e por duas ondas de deriva ressonantes, não seja turbulento na descrição euleriana, as trajetórias lagrangianas das partículas são caóticas. Foi estudada a influência do perfil radial do campo elétrico nas barreiras de transporte e nas células convectivas criadas pela interação não linear entre o fluxo de equilíbrio e as ondas ressonantes. Para equilíbrios com fluxo reverso, nossos resultados mostram que o transporte de partículas pode ser reduzido pela alteração do perfil do campo elétrico. Finalmente, nossos resultados são aplicados para propor uma interpretação das experiências recentes em tokamaks que mostram uma redução do transporte quando um eletrodo polarizado é inserido na borda do plasma. Como um exemplo, usamos valores experimentais obtidos no TCABR para os perfis radiais do campo elétrico de equilíbrio e suas flutuações, durante o regime ôhmico padrão e durante o regime de confinamento melhorado. / We investigate the chaotic particle transport by resonant drift waves propagating in tokamaks plasma edges with ~E × ~B poloidal zonal flow, a critical problem for the understanding of the confinement properties of fusion plasmas. We assume, for large aspect ratio tokamaks, a non integrable hamiltonian model (proposed by Horton) to describe the non linear dynamical contribution to the transport. Thus, although the total flow, formed by the equilibrium flow and two dominant resonant drift waves, is not turbulent in the eulerian point of view, the lagrangian particle trajectories are chaotic. We study the influence of the electric field radial profile on the transport barriers and convective cells created by the non linear interaction between the poloidal flow and the resonant waves. For equilibria with reverse shear flows, our results show that the particle transport can be reduced by modifying the electric field profile. Futhermore, our results are applied to propose an interpretation of recent tokamak experiments developed for studying the transport reduction when a biased electrode is inserted into the plasma edge or the Scrape-Off-Layer. As an example, we use the equilibrium and fluctuating electric field radial profiles measured in the TCABR tokamak to calculate the transport during the standard ohmic and improved confinement regimes obtained in this tokamak.

Page generated in 0.0588 seconds