• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 52
  • 27
  • 19
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 224
  • 43
  • 40
  • 39
  • 32
  • 29
  • 28
  • 28
  • 25
  • 25
  • 25
  • 24
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Polyfunkční dům / Mixed-use building

Hort, Martin January 2020 (has links)
Diploma thesis describes the design and processing of project documentation of the multifunctional building. The multifunctional building is located in the central part of the town Náměšť nad Oslavou. The building has 4 floors. It is partly cellared building with flat roof and walkable terraces. This building is consisted of 2 functional parts, the first part is designed for living and the second one is designed for contact with the customer. There are shops and offices. The first floor is wheelchair accessible. In the basement there is a technical background of the building and cellars for housing units. In this multifunctional building we can find 13 residential units and five offices. All of the floors are connected with staircase and lift. The Carpark and the private garden with playground are also part of this residential area. This building is based on concrete blocks. Load-bearing, peripheral walls and connecting walls are made of ceramic blocks. A monolitic ceiling construction is the combination of the iron and the concrete. Two types of insulation are used in peripheral walls. The first one is called ETICS, external thermal insulation composite system, made of polystyrene. The second type of insulation is facade cladding system where the main insulation layer is made of mineral wool. The insulation layer is replaced by XPS polystyrene where facade is in contact with the ground. Facade cladding panels are made of cement and wood fibers called Cembrit.
182

Autosalon / Motorshow

Bár, Radek January 2014 (has links)
This master thesis is focused on elaboration of project documentation for constructing autosalon in Kopřivnice. Project and appendix are processed by current applicable laws, regulations and standarts. Designed object is situated on plat #419/2 and partly on plat #419/27. Both plats are parts of cadastral area of Kopřivnice. There are all needed engineering networks nearby. Object is divided on three functional parts, which are operationally and constructionally connected. First part is exhibition and representative hall, with capacity of 11 exhibited vehicles. Second part is formed by administrative facilities for staff including sanitary facilities for both staff and visitors. Third part is service for personal and light commercial vehicles with three working stations. Construction is designed partially reinforced concrete columnar structural system and partially of brick longitudinal structural system. The biggest plan dimension of building is 34.3x35.15m. The cladding is designed of sandwich blocks LIVETHERM tl.400mm. Roof of building accross the surface is flat roof with several height levels. Establishment of the object is a combination of footings and foundation belts. Cladding of exhibition hall is more than 50% glazed. Parts of service and autosalon are designed as sigle storey objects, while administrative part is designed as a two.
183

Autosalon / Autosalon

Balúch, Tomáš January 2017 (has links)
This master's thesis focuses on design and elaboration of documentation for construction of a Car Showroom. The building is divided to two functional parts. The building is to be situated on plot number 1333/21, cadastre unit: Bohunice. The building is to be located on an undeveloped plot in possesion of the investor. The parking lots are connected to a local road. All substantial infrastructures are located nearby the plot. The proposition and the design of the building have respect for both commune plan and current buildings. The documentation is elaborated with regard to the contemporary Czech legislative and standards. The project designs the building, which is divided in two functional parts: SO 01 & SO 02, both operationally and visually connected. Contructions of objects are structurally independent. The first object includes exhibition hall with capacity of 8 exhibited cars. There is also to be located the administrative part, waiting rooms for customers, facilities for employees and the warehouse. The second object includes car repair shop. There are also to be located facilities for employees of the service, workshop, room for a car handover, hand car wash and an utility room. Construction is designed as a reinforced concrete columnar structural system with prefabricated single footings, self-supporting foundation slab and reinforced concrete ceiling slab with integrated girders above first floor of the object SO 01. The roofs of the building are designed as a flat roofs and the support constructions are made of steel. Planned dimensions of autosalon are 41x18 metres. As a cladding of the first object is used the lightweight glass cladding. For masonry walls are used the 250 mm thick ceramic blocks, mineral insulation and ventilated external facade cladding with use of fiber-cement boards. Planned dimensions of car repair shop are 31x28 metres. As a cladding of the second object are used the sandwich panels with foam core made of PIR.
184

Diode laser 1.5 micron de puissance et faible bruit pour l’optique hyperfréquence. / High power, low noise 1.5 micron diode lasers for microwave photonics.

Faugeron, Mickael 22 October 2012 (has links)
Cette thèse porte sur la conception, la réalisation et la caractérisation de diodes lasers de puissance, faible bruit à 1.5 µm sur InP pour des applications d’optique hyperfréquence, notamment pour des liaisons optiques analogiques de grande dynamique pour les systèmes radar. La première partie du travail a consisté à modéliser et concevoir des structures laser DFB ayant de faibles pertes internes. Ces structures, appelées lasers à semelle, incorporent une couche épaisse de matériaux entre la zone active et le substrat pour agrandir et délocaliser le mode propre optique des zones dopées p. La complexité de la conception résidait dans le bon compromis à trouver entre les performances statiques et dynamiques. Nous avons réalisé des diodes-lasers DFB avec une puissance > 150 mW, un rendement de 0.4 W/A, un niveau de bruit de 160 dB/Hz et une bande passante de modulation à 3 dB de 7.5 GHz. Les composants ont ensuite été caractérisés puis évalués dans des liaisons analogiques. Nous avons démontré des performances de gain de liaison, de dynamique et de point de compression à l’état de l’art mondial. En bande L (1-2 GHz) par exemple, nous avons montré des liaisons avec 0.5 dB de gain, un point de compression de 21 dBm et une dynamique (SFDR) de 122 dB.Hz2/3.En utilisant la même méthodologie de conception, la dernière partie du travail de thèse a été consacrée à la réalisation et à la caractérisation de lasers de puissance à verrouillage de modes pour la génération de train d’impulsions ultra-courts et la génération de peignes de fréquences. Ces structures présentent de très faibles largeurs de raie RF (550 Hz) et de très fortes puissances optiques (> 18 W en puissance crête). / This work focuses on the design, realization and characterization of high power, low noise 1.5 µm diode lasers for microwave applications and more particularly for high dynamic optical analog link for radar systems. The first part of this study deals with modeling and design of low internal losses DFB laser structures. These specific structures are called slab-coupled optical waveguide lasers, and are composed of a thick layer between the active layer and the substrate. The aim of this waveguide is to enlarge the optical eigenmode and to move the optical mode away from p-doped layers. The main difficulty was to find the good trade-off between laser static performances (optical power, efficiency) and dynamic performances (RIN and modulation bandwidth). We have succeeded in developing high efficiency (0.4 W/A), low noise (RIN ≈ 160 dB/Hz) DFB lasers with more than 150 mW and a 3 dB modulation bandwidth up to 7.5 GHz. We have then characterized our components on wide band and narrow band analog links. We have demonstrated state of the art gain links, dynamic and 1 dB compression power. In the L band (1-2 GHz) for example, we have obtained an optical link with a gain of 0.5 dB, a compression power of 21 dBm and a dynamic (SFDR) of 122 dB.Hz2/3.Finally we have applied the methodology and the design of slab-coupled optical waveguide structures to develop high power mode-locked lasers for ultra-short pulses generation and for optical and electrical comb generation. We have demonstrated narrow RF linewidth (550 Hz) lasers with very high power (continuous power > 400 mW and peak power > 18 W).
185

Sistema de fixação e juntas em vedações verticais constituídas por placas cimentícias: estado da arte, desenvolvimento de um sistema e avaliação experimental. / Fixing system and joints in vertical enclosures consisting of fiber cement boards: state of the art, development of a system and experimental evaluation.

Fontenelle, João Heitzmann 23 May 2012 (has links)
A construção civil é o maior consumidor de recursos naturais do planeta, apropriando-se atualmente de mais da metade da massa total dos materiais extraídos. Neste contexto, o desenvolvimento de sistemas construtivos que proporcionem uma redução do consumo de materiais, conhecida como o princípio da desmaterialização dos edifícios, pode ser uma estratégia para a redução do impacto que a construção civil exerce sobre o ambiente, e um passo em direção a uma economia mais sustentável. A utilização de placas cimentícias para a produção de vedações vem crescendo em várias partes do mundo, seja para a produção de vedações verticais externas, seja como revestimento não aderido sobre vedos existentes, destinados tanto a melhoria estética quanto o desempenho destas fachadas. Uma vedação com placas cimentícias possui em torno de 25% da massa de uma alvenaria tradicional constituída por blocos de concreto para a execução de uma mesma área de vedação vertical, o que pode contribuir ainda para uma redução dos materiais empregados nas estruturas e fundações de um edifício. Apesar da utilização destas placas cimentícias estar coerente com a estratégia da desmaterialização, algumas experiências de vedações executadas com estes componentes manifestaram problemas de manutenção de suas características ao longo do tempo, apresentando fissuras geralmente nas juntas entre placas. Verificando-se as propriedades dos materiais que constituem esta placa cimentícia, principalmente a variação dimensional em relação à temperatura e umidade, constatou-se uma incompatibilidade entre a amplitude das variações dimensionais resultantes e os sistemas de fixação e juntas empregados para a sustentação das mesmas. A avaliação experimental de choque térmico comprovou a influência destas variações para a deterioração das juntas entre as placas. Com base nesta constatação, e em análises dos processos de fixação de placas cimentícias adotados por fornecedores em diversas partes do mundo, foi desenvolvido neste trabalho um novo sistema de fixação para placas cimentícias e de juntas entre estas com capacidade de atender a esta variação dimensional. Realizaram-se protótipos destes componentes os quais foram submetidos a uma avaliação experimental de choque térmico, resultando em nenhuma alteração visível nas juntas e nas superfícies destas placas. Como resultado concluiu-se que a criação de mecanismos que possibilitem acomodação às variações dimensionais, tanto nos dispositivos de fixação destas à estrutura, quanto nos acabamentos das juntas, podem contribuir significativamente para a durabilidade do sistema de vedações constituída por placas cimentícias. / The construction industry is the largest consumer of natural resources in the planet, currently appropriating more than half of mass of the total material extracted. In this context, the development of building systems that provide their dematerialization can be considered as a strategy to reduce the environmental construction impact, and a step toward a more sustainable economy. The use of fiber cement boards for the building production is growing in many parts of the world, to produce external vertical building enclosure or building envelopes, to improving the aesthetics and performance of these facades. A fiber cement board walls weigh around 25% of the traditional masonry mass made of concrete blocks for the same area of vertical building enclosure which can further contribute to a reduction of the materials used in building structures and foundations. Although the use of fiber cement boards complies with the dematerialization strategy, some experiments carried out with these cladding showed maintenance problems over time, usually cracks in the joints between panels. Checking the properties of materials constituting fiber cement boards, especially the dimensional variation due to changing temperature and humidity, there was an incompatibility between these dimensional variations amplitude and fixing systems and joints used to support them. The thermal shock experimental evaluation proved the influence of these variations on joints deterioration. Based on this observation, and on analyzes of the fiber cement suppliers recommendations over the world, a new system for fixing fiber cement board and joints between them was developed in this work with capacity to adapt to this dimensional variation. Prototypes of these components were made and submitted the thermal shock evaluation, resulting in no visible changes in the joints and on the surfaces of these panels. As a result, it was concluded that the creation of mechanisms that allow accommodating the dimensional variations, both in fixing these panels to the structure, and in the joints finishing can significantly contribute to the vertical building enclosure system durability.
186

Sistema de fixação e juntas em vedações verticais constituídas por placas cimentícias: estado da arte, desenvolvimento de um sistema e avaliação experimental. / Fixing system and joints in vertical enclosures consisting of fiber cement boards: state of the art, development of a system and experimental evaluation.

João Heitzmann Fontenelle 23 May 2012 (has links)
A construção civil é o maior consumidor de recursos naturais do planeta, apropriando-se atualmente de mais da metade da massa total dos materiais extraídos. Neste contexto, o desenvolvimento de sistemas construtivos que proporcionem uma redução do consumo de materiais, conhecida como o princípio da desmaterialização dos edifícios, pode ser uma estratégia para a redução do impacto que a construção civil exerce sobre o ambiente, e um passo em direção a uma economia mais sustentável. A utilização de placas cimentícias para a produção de vedações vem crescendo em várias partes do mundo, seja para a produção de vedações verticais externas, seja como revestimento não aderido sobre vedos existentes, destinados tanto a melhoria estética quanto o desempenho destas fachadas. Uma vedação com placas cimentícias possui em torno de 25% da massa de uma alvenaria tradicional constituída por blocos de concreto para a execução de uma mesma área de vedação vertical, o que pode contribuir ainda para uma redução dos materiais empregados nas estruturas e fundações de um edifício. Apesar da utilização destas placas cimentícias estar coerente com a estratégia da desmaterialização, algumas experiências de vedações executadas com estes componentes manifestaram problemas de manutenção de suas características ao longo do tempo, apresentando fissuras geralmente nas juntas entre placas. Verificando-se as propriedades dos materiais que constituem esta placa cimentícia, principalmente a variação dimensional em relação à temperatura e umidade, constatou-se uma incompatibilidade entre a amplitude das variações dimensionais resultantes e os sistemas de fixação e juntas empregados para a sustentação das mesmas. A avaliação experimental de choque térmico comprovou a influência destas variações para a deterioração das juntas entre as placas. Com base nesta constatação, e em análises dos processos de fixação de placas cimentícias adotados por fornecedores em diversas partes do mundo, foi desenvolvido neste trabalho um novo sistema de fixação para placas cimentícias e de juntas entre estas com capacidade de atender a esta variação dimensional. Realizaram-se protótipos destes componentes os quais foram submetidos a uma avaliação experimental de choque térmico, resultando em nenhuma alteração visível nas juntas e nas superfícies destas placas. Como resultado concluiu-se que a criação de mecanismos que possibilitem acomodação às variações dimensionais, tanto nos dispositivos de fixação destas à estrutura, quanto nos acabamentos das juntas, podem contribuir significativamente para a durabilidade do sistema de vedações constituída por placas cimentícias. / The construction industry is the largest consumer of natural resources in the planet, currently appropriating more than half of mass of the total material extracted. In this context, the development of building systems that provide their dematerialization can be considered as a strategy to reduce the environmental construction impact, and a step toward a more sustainable economy. The use of fiber cement boards for the building production is growing in many parts of the world, to produce external vertical building enclosure or building envelopes, to improving the aesthetics and performance of these facades. A fiber cement board walls weigh around 25% of the traditional masonry mass made of concrete blocks for the same area of vertical building enclosure which can further contribute to a reduction of the materials used in building structures and foundations. Although the use of fiber cement boards complies with the dematerialization strategy, some experiments carried out with these cladding showed maintenance problems over time, usually cracks in the joints between panels. Checking the properties of materials constituting fiber cement boards, especially the dimensional variation due to changing temperature and humidity, there was an incompatibility between these dimensional variations amplitude and fixing systems and joints used to support them. The thermal shock experimental evaluation proved the influence of these variations on joints deterioration. Based on this observation, and on analyzes of the fiber cement suppliers recommendations over the world, a new system for fixing fiber cement board and joints between them was developed in this work with capacity to adapt to this dimensional variation. Prototypes of these components were made and submitted the thermal shock evaluation, resulting in no visible changes in the joints and on the surfaces of these panels. As a result, it was concluded that the creation of mechanisms that allow accommodating the dimensional variations, both in fixing these panels to the structure, and in the joints finishing can significantly contribute to the vertical building enclosure system durability.
187

Détermination d’un critère de rupture des gaines de Zircaloy-4 détendu hydruré contenant un blister d’hydrures, en conditions d’accident d’injection de réactivité. / Determination of a fracture criterion for cold worked and stress relieved Zircaloy-4 fuel cladding tubes with hydride blister, during a reactivity initiated accident.

Macdonald, Vincent 16 September 2016 (has links)
Cette étude porte sur la détermination d’un critère de rupture des gaines de combustible de Zircaloy-4 détendu hydruré contenant un blister d’hydrures, en conditions accidentelles représentatives d’un accident d’injection de réactivité. Deux plages de comportement différentes en fonction de la température ont clairement été mises en évidence grâce à l’étude bibliographique, aux différentes campagnes d’essais mécaniques et aux analyses des faciès de rupture des éprouvettes rompues : une rupture de type fragile pour la gaine à 25°C et une rupture ductile à 350°C.A 25°C, la rupture fragile a été traitée par une analyse globale en mécanique élasto-plastique de la rupture. A partir des essais mécaniques effectués à 25°C sur les gaines contenant des blisters, des simulations numériques par éléments finis ont été réalisées avec le code CAST3M. Des calculs d’intégrales-J en pointe de fissure ont alors permis d’identifier un critère de rupture en ténacité moyenne de 13,8 +/- 3,1 MPa.m1/2.A 350°C, une campagne d’essais biaxés de type pression interne couplée à la traction axiale a été réalisée sur des tronçons de Zircaloy-4 contenant des blisters, à des biaxialités des contraintes représentatives du RIA. Il a été montré que la rupture de la gaine, avec et sans blister, avait lieu de façon ductile, que la déformation diamétrale à rupture de la gaine diminuait lorsque la profondeur de blister augmentait, et que la biaxialité des contraintes n’avait pas d’effet sur la rupture des gaines contenant un blister suffisamment profond.Un modèle d’endommagement ductile couplé à la plasticité, basé sur un formalisme de type GTN, a été utilisé. Afin d’améliorer la description de l’endommagement des gaines de Zircaloy-4, une nouvelle source de germination de porosités liée au paramètre de Lode a été intégrée dans le modèle. L’évaluation de la triaxialité des contraintes et du paramètre de Lode dans les simulations numériques de la rupture ductile des gaines à 350°C a notamment permis de comprendre certaines tendances expérimentales. / This study deals with the determination of a fracture criterion for hydrided, cold worked and stress relieved Zircaloy-4 fuel cladding tubes with hydride blister, during a reactivity initiated accident. Two types of fracture profiles were identified, depending on the temperature, thanks to a bibliographical study, mechanical tests and fracture profiles analysis : brittle fracture at 25°C, and ductile fracture at 350°C.At 25°C, brittle fracture was studied by a global analysis in elasto-plastic fracture mechanic. Numerical simulations were performed by a finite element method with the CAST3M code, based on mechanical tests on fuel cladding tubes with blisters. Crack tip J-integral calculations were carried out to identify a mean fracture toughness of 13,8 +/- 3,1 MPa.m1/2.At 350°C, internal pressure combined to axial tensile tests were performed on Zircaloy-4 fuel cladding tubes with hydride blisters, at stress biaxialities corresponding to those of a RIA. It was observed a ductile fracture for tubes with and without blister. It was shown that hoop strain at failure decreases when blister thickness increases, and that stress biaxiality has no effect on cladding tubes bearing a thick blister. A ductile fracture model based on the GTN model was employed and a nucleation of voids due to shear stress was introduced, based on the Lode parameter. Stress triaxiality and Lode parameter were assessed in numerical simulations to understand some experimental observations.
188

MORAVSKÉ VINAŘSKÉ CENTRUM BRNO / Moravian wine centre Brno

Jedrzejková, Ivana January 2016 (has links)
The main subject of this diploma project was to design an architectural proposal of Moravian Wine Centre in Brno, Czech Republic. To design a polyfunctional building with a concept of new use of an existing network of underground cellars became the main goal of the proposal. The building is divided into seven functional units where services in the fields of culture, education, gastronomy, recreation and wine production will be provided. The form and shape of MVC is based on the idea of making a passable connection between two important urban spaces Exhibition Centre Brno, and the Zluty Kopec area. The next aim was to create a public space for cultural events and recreation. Part of the assignment was to deal with smaller urban planning of adjacent properties and to react to Brno's planning policy. The new park type of green line, axially connecting those two points of Exhibition Centre and Zluty Kopec, and a new access road from the street "Vinarska" were proposed. Parking spaces are divided into above-ground and underground in order to restrict parking on street. An automatic parking system is part of the object MVC Brno.
189

Sportovní centrum / Sports Center

Dvořák, Jiří January 2018 (has links)
The diploma thesis deals with design and elaboration of the project documentation of the sports center. The proposed sport center facility is located in the western part of Zruč nad Sázavou, in a location designed for buildings and areas of sport and relaxation use. The object of the sports center is designed as two-storey, non-blocked, roofed flat roof. The main feature of the sports center is the multipurpose sports hall with a single-shell curved flat roof. The supporting element is a curved glued lamellar truss. The proposed contruction of the sports center has 2 functional parts. This is a multipurpose sports hall with backgrounds (dressing rooms, washrooms), two squash courts, a gym and two exercise halls as well as facilities. The sports hal lis complemented by tribune for 380 spectators. The second part is a sports bar with a capacity of 40 people. The perimeter structures of the sports center are designed by a ceramic and insulated mineral wool contact systém with a ventilated aluminum facade. The supporting ceiling structure consists of prefabricated Spiroll panels. Designed 2 VZT engine rooms in 2nd floor, on efor 1st floor and second for 2nd floor including sports hall. Hot water heating by gas boilers. Part of the proposed construction is paved areas of parking lots
190

Sportovní centrum / Sports Centre

Sauer, Vít January 2018 (has links)
The content of the master´s thesis is new building sports hall of ball sports. This building has contains no cellar and three above-ground floors. In ground floor, there are playing area, changing rooms, relevant functional facilities including utility rooms. The first floor is completely reserved for spectators, there are tribune for sitting spectators, gallery for standing spectators, hygienic rooms and buffet for spectators. In the third floor, there are rooms for VIP spectators, briefing room, head office of sports hall including conference room, spaces for TV transmission, hygienic rooms and utility room. Object is based on concrete foundation pads and strips foundation. Structural system of the object is combination of column system from cast-inplace reinforced concrete and wall system from brickwork. Floor structures over above the first and second floor are designed as castin- place reinforced concrete, floor structure above the third floor is folded from wood beams. Loadbearing structure of roof is system of glue laminated timber girders, roof cladding is mechanically anchored.

Page generated in 0.0175 seconds