• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 24
  • 14
  • 9
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 137
  • 137
  • 54
  • 33
  • 32
  • 31
  • 31
  • 29
  • 28
  • 27
  • 26
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

„Community Detection“ als Ansatz zur Identifikation von Innovatoren in Sozialen Netzwerken

Zeini, Sam, Hoppe, Ulrich 22 May 2014 (has links) (PDF)
No description available.
122

整合社群關係的OLAP操作推薦機制 / A Recommendation Mechanism on OLAP Operations based on Social Network

陳信固, Chen, Hsin Ku Unknown Date (has links)
近幾年在金融風暴及全球競爭等影響下,企業紛紛導入商業智慧平台,提供管理階層可簡易且快速的分析各種可量化管理的關鍵指標。但在後續的推廣上,經常會因商業智慧系統提供的資訊過於豐富,造成使用者在學習階段無法有效的取得所需資訊,導致商業智慧無法發揮預期效果。本論文以使用者在商業智慧平台上的操作相似度進行分析,建立相對於實體部門的凝聚子群,且用中心性計算各節點的關聯加權,整合至所設計的推薦機制,用以提升商業智慧平台成功導入的機率。經模擬實驗的證實,在推薦機制中考慮此因素會較原始的推薦機制擁有更高的精確度。 / In recent years, enterprises are facing financial turmoil, global competition, and shortened business cycle. Under these influences, enterprises usually implement the Business Intelligence platform to help managers get the key indicators of business management quickly and easily. In the promotion stage of such Business Intelligence platforms, users usually give up using the system due to huge amount of information provided by the BI platform. They cannot intuitively obtain the required information in the early stage when they use the system. In this study, we analyze the similarity of users’ operations on the BI platform and try to establish cohesive subgroups in the corresponding organization. In addition, we also integrate the associated weighting factor calculated from the centrality measures into the recommendation mechanism to increase the probability of successful uses of BI platform. From our simulation experiments, we find that the recommendation accuracies are higher when we add the clustering result and the associated weighting factor into the recommendation mechanism.
123

事件導向動態社會網路分析應用於政治權力變化之觀察 / An application of event-based dynamic social network analysis for observing political power evolution

莊婉君, Chuang, Wan Chun Unknown Date (has links)
如何從大量的資料中擷取隱匿或不容易直接觀察的資訊,是重要的議題,社會網路提供了一個適當的系統描述模型與內部檢視分析的方法,過去社會網路分析多著重於靜態的分析,無法解釋發生在網路上的動態行為;我們的研究目的是從動態社會網路分析的角度,觀察政治權力的變化,將資料依時間切分成多個資料集,在各個資料集中,利用官員共同異動職務及共事資料建構網路,並使用EdgeBetweenness分群方法將網路做分群,以找出潛在的政治群組,接著再採用事件導向的方法(Event-based Framework),比較連續兩個時間區間的網路分群結果,以觀察政治群體的動態發展,找出政治群組事件,並將其匯集成政治群組指標,以用來衡量政治群組的變動性及穩定性。我們提供了一個觀察政治權力變化的模型,透過網路建立、網路分群到觀察網路動態行為,找到不容易直接取得的資訊,我們也以此觀察模型解決以下問題:(1)觀察部門之接班梯隊之變化,(2)觀察特定核心人物之核心成員組成模式,(3)部門專業才能單一性或多元性之觀察。實驗結果顯示,利用政治群組事件設計的政治群組指標,可實際反應政府部門選用人才的傾向為內部調任或外部選用。 / Extracting implicit information from a considerable amount of data is an important intelligent data processing task. Social network analysis is appropriate for this purpose due to its emphasis on the relationship between nodes and the structure of networked interactions. Most research in the past has focused on a static point of view. It can't account for whatever action is taking place in the network. Our research objective is to observe the evolution of political power by dynamic social network analysis. We begin by creating static graphs at different time according to the synchronous job change between the government officials or the relationship between the government officials whom work in the same government agency. We obtain political communities from each of these snapshot graphs using edge betweenness clustering method. Next we define a set of evolutionary events of political communities using event-based framework. We compare two consecutive snapshots to capture the evolutionary events of political communities. We also develop two evolutionary political community metrics to measure the stability of political communities. We propose a model of observing the evolution of political power by three steps-network construction, community identification and community evolution tracking. The approach is shown to be effectual for the purposes of: (1) finding succession pool members in government agencies, (2) observing the inner circle of a leading political figure, (3) measuring the specialized degree of government agencies. Experiments also show that our community evolution metrics reflect the tendency of whether a government agency conducts internal succession or outside appointment.
124

Inférence statistique en grande dimension pour des modèles structurels. Modèles linéaires généralisés parcimonieux, méthode PLS et polynômes orthogonaux et détection de communautés dans des graphes. / Statistical inference for structural models in high dimension. Sparse generalized linear models, PLS through orthogonal polynomials and community detection in graphs

Blazere, Melanie 01 July 2015 (has links)
Cette thèse s'inscrit dans le cadre de l'analyse statistique de données en grande dimension. Nous avons en effet aujourd'hui accès à un nombre toujours plus important d'information. L'enjeu majeur repose alors sur notre capacité à explorer de vastes quantités de données et à en inférer notamment les structures de dépendance. L'objet de cette thèse est d'étudier et d'apporter des garanties théoriques à certaines méthodes d'estimation de structures de dépendance de données en grande dimension.La première partie de la thèse est consacrée à l'étude de modèles parcimonieux et aux méthodes de type Lasso. Après avoir présenté les résultats importants sur ce sujet dans le chapitre 1, nous généralisons le cas gaussien à des modèles exponentiels généraux. La contribution majeure à cette partie est présentée dans le chapitre 2 et consiste en l'établissement d'inégalités oracles pour une procédure Group Lasso appliquée aux modèles linéaires généralisés. Ces résultats montrent les bonnes performances de cet estimateur sous certaines conditions sur le modèle et sont illustrés dans le cas du modèle Poissonien. Dans la deuxième partie de la thèse, nous revenons au modèle de régression linéaire, toujours en grande dimension mais l'hypothèse de parcimonie est cette fois remplacée par l'existence d'une structure de faible dimension sous-jacente aux données. Nous nous penchons dans cette partie plus particulièrement sur la méthode PLS qui cherche à trouver une décomposition optimale des prédicteurs étant donné un vecteur réponse. Nous rappelons les fondements de la méthode dans le chapitre 3. La contribution majeure à cette partie consiste en l'établissement pour la PLS d'une expression analytique explicite de la structure de dépendance liant les prédicteurs à la réponse. Les deux chapitres suivants illustrent la puissance de cette formule aux travers de nouveaux résultats théoriques sur la PLS . Dans une troisième et dernière partie, nous nous intéressons à la modélisation de structures au travers de graphes et plus particulièrement à la détection de communautés. Après avoir dressé un état de l'art du sujet, nous portons notre attention sur une méthode en particulier connue sous le nom de spectral clustering et qui permet de partitionner les noeuds d'un graphe en se basant sur une matrice de similarité. Nous proposons dans cette thèse une adaptation de cette méthode basée sur l'utilisation d'une pénalité de type l1. Nous illustrons notre méthode sur des simulations. / This thesis falls within the context of high-dimensional data analysis. Nowadays we have access to an increasing amount of information. The major challenge relies on our ability to explore a huge amount of data and to infer their dependency structures.The purpose of this thesis is to study and provide theoretical guarantees to some specific methods that aim at estimating dependency structures for high-dimensional data. The first part of the thesis is devoted to the study of sparse models through Lasso-type methods. In Chapter 1, we present the main results on this topic and then we generalize the Gaussian case to any distribution from the exponential family. The major contribution to this field is presented in Chapter 2 and consists in oracle inequalities for a Group Lasso procedure applied to generalized linear models. These results show that this estimator achieves good performances under some specific conditions on the model. We illustrate this part by considering the case of the Poisson model. The second part concerns linear regression in high dimension but the sparsity assumptions is replaced by a low dimensional structure underlying the data. We focus in particular on the PLS method that attempts to find an optimal decomposition of the predictors given a response. We recall the main idea in Chapter 3. The major contribution to this part consists in a new explicit analytical expression of the dependency structure that links the predictors to the response. The next two chapters illustrate the power of this formula by emphasising new theoretical results for PLS. The third and last part is dedicated to graphs modelling and especially to community detection. After presenting the main trends on this topic, we draw our attention to Spectral Clustering that allows to cluster nodes of a graph with respect to a similarity matrix. In this thesis, we suggest an alternative to this method by considering a $l_1$ penalty. We illustrate this method through simulations.
125

Mineração de estruturas musicais e composição automática utilizando redes complexas / Musical structures mining and composition using complex networks

Andrés Eduardo Coca Salazar 26 November 2014 (has links)
A teoria das redes complexas tem se tornado cada vez mais em uma poderosa teoria computacional capaz de representar, caracterizar e examinar sistemas com estrutura não trivial, revelando características intrínsecas locais e globais que facilitam a compreensão do comportamento e da dinâmica de tais sistemas. Nesta tese são exploradas as vantagens das redes complexas na resolução de problemas relacionados com tarefas do âmbito musical, especificamente, são estudadas três abordagens: reconhecimento de padrões, mineração e síntese de músicas. A primeira abordagem é desempenhada através do desenvolvimento de um método para a extração do padrão rítmico de uma peça musical de caráter popular. Nesse tipo de peças coexistem diferentes espécies de padrões rítmicos, os quais configuram uma hierarquia que é determinada por aspectos funcionais dentro da base rítmica. Os padrões rítmicos principais são caracterizados por sua maior incidência dentro do discurso musical, propriedade que é refletida na formação de comunidades dentro da rede. Técnicas de detecção de comunidades são aplicadas na extração dos padrões rítmicos, e uma medida para diferenciar os padrões principais dos secundários é proposta. Os resultados mostram que a qualidade da extração é sensível ao algoritmo de detecção, ao modo de representação do ritmo e ao tratamento dado às linhas de percussão na hora de gerar a rede. Uma fase de mineração foi desempenhada usando medidas topológicas sobre a rede obtida após a remoção dos padrões secundários. Técnicas de aprendizado supervisionado e não-supervisionado foram aplicadas para discriminar o gênero musical segundo os atributos calculados na fase de mineração. Os resultados revelam a eficiência da metodologia proposta, a qual foi constatada através de um teste de significância estatística. A última abordagem foi tratada mediante o desenvolvimento de modelos para a composição de melodias através de duas perspectivas, na primeira perspectiva é usada uma caminhada controlada por critérios sobre redes complexas predefinidas e na segunda redes neurais recorrentes e sistemas dinâmicos caóticos. Nesta última perspectiva, o modelo é treinado para compor uma melodia com um valor preestabelecido de alguma característica tonal subjetiva através de uma estratégia de controle proporcional que modifica a complexidade de uma melodia caótica, melodia que atua como entrada de inspiração da rede. / The theory of complex networks has become increasingly a powerful computational tool capable of representing, characterizing and examining systems with non-trivial structure, revealing both local and global intrinsic structures that facilitate the understanding of the behavior and dynamics of such systems. In this thesis, the virtues of complex networks in solving problems related to tasks within the musical scope are explored. Specifically, three approaches are studied: pattern recognition, data mining, and synthesis. The first perspective is addressed by developing a method for extracting the rhythmic pattern of a piece of popular music. In that type of musical pieces, there coexist different types of rhythm patterns which constitute a hierarchy determined by functional aspects within the basic rhythm. The main rhythmic patterns are characterized by a higher incidence within the musical discourse and this factor is reflected in the formation of communities within the network constructed from the music piece. Community detection techniques are applied in the extraction of rhythmic patterns, and a measure to distinguish the main patterns of the secondary is proposed. The results showed that the quality of extraction is sensitive to the detection algorithm, the method of representing rhythm, and treatment of percussion lines when generating the network. Data mining is performed using topological measures over the network obtained after the removal of secondary patterns. Techniques of supervised and unsupervised learning are applied to discriminate the musical genre according to the attributes calculated in the data mining phase. The quantitative results show the efficiency of the proposed methodology, which is confirmed by a test of statistical significance. Regarding the melody generation, an algorithm using a walk controlled by criteria on predefined complex networks has been developed, as well as the development of melody composition models using recurrent neural networks and chaotic dynamical systems. In the last approach, the model is trained to compose a melody with a subjective characteristic melodic value pre-established by a proportional control strategy that acts on the parameters of a chaotic melody as input inspiration.
126

„Community Detection“ als Ansatz zur Identifikation von Innovatoren in Sozialen Netzwerken

Zeini, Sam, Hoppe, Ulrich January 2010 (has links)
No description available.
127

Community Detection of Anomaly in Large-Scale Network Dissertation - Adefolarin Bolaji .pdf

Adefolarin Alaba Bolaji (10723926) 29 April 2021 (has links)
<p>The detection of anomalies in real-world networks is applicable in different domains; the application includes, but is not limited to, credit card fraud detection, malware identification and classification, cancer detection from diagnostic reports, abnormal traffic detection, identification of fake media posts, and the like. Many ongoing and current researches are providing tools for analyzing labeled and unlabeled data; however, the challenges of finding anomalies and patterns in large-scale datasets still exist because of rapid changes in the threat landscape. </p><p>In this study, I implemented a novel and robust solution that combines data science and cybersecurity to solve complex network security problems. I used Long Short-Term Memory (LSTM) model, Louvain algorithm, and PageRank algorithm to identify and group anomalies in large-scale real-world networks. The network has billions of packets. The developed model used different visualization techniques to provide further insight into how the anomalies in the network are related. </p><p>Mean absolute error (MAE) and root mean square error (RMSE) was used to validate the anomaly detection models, the results obtained for both are 5.1813e-04 and 1e-03 respectively. The low loss from the training phase confirmed the low RMSE at loss: 5.1812e-04, mean absolute error: 5.1813e-04, validation loss: 3.9858e-04, validation mean absolute error: 3.9858e-04. The result from the community detection shows an overall modularity value of 0.914 which is proof of the existence of very strong communities among the anomalies. The largest sub-community of the anomalies connects 10.42% of the total nodes of the anomalies. </p><p>The broader aim and impact of this study was to provide sophisticated, AI-assisted countermeasures to cyber-threats in large-scale networks. To close the existing gaps created by the shortage of skilled and experienced cybersecurity specialists and analysts in the cybersecurity field, solutions based on out-of-the-box thinking are inevitable; this research was aimed at yielding one of such solutions. It was built to detect specific and collaborating threat actors in large networks and to help speed up how the activities of anomalies in any given large-scale network can be curtailed in time.</p><div><div><div> </div> </div> </div> <br>
128

Information diffusion and opinion dynamics in social networks / Dissémination de l’information et dynamique des opinions dans les réseaux sociaux

Louzada Pinto, Julio Cesar 14 January 2016 (has links)
La dissémination d'information explore les chemins pris par l'information qui est transmise dans un réseau social, afin de comprendre et modéliser les relations entre les utilisateurs de ce réseau, ce qui permet une meilleur compréhension des relations humaines et leurs dynamique. Même si la priorité de ce travail soit théorique, en envisageant des aspects psychologiques et sociologiques des réseaux sociaux, les modèles de dissémination d'information sont aussi à la base de plusieurs applications concrètes, comme la maximisation d'influence, la prédication de liens, la découverte des noeuds influents, la détection des communautés, la détection des tendances, etc. Cette thèse est donc basée sur ces deux facettes de la dissémination d'information: nous développons d'abord des cadres théoriques mathématiquement solides pour étudier les relations entre les personnes et l'information, et dans un deuxième moment nous créons des outils responsables pour une exploration plus cohérente des liens cachés dans ces relations. Les outils théoriques développés ici sont les modèles de dynamique d'opinions et de dissémination d'information, où nous étudions le flot d'informations des utilisateurs dans les réseaux sociaux, et les outils pratiques développés ici sont un nouveau algorithme de détection de communautés et un nouveau algorithme de détection de tendances dans les réseaux sociaux / Our aim in this Ph. D. thesis is to study the diffusion of information as well as the opinion dynamics of users in social networks. Information diffusion models explore the paths taken by information being transmitted through a social network in order to understand and analyze the relationships between users in such network, leading to a better comprehension of human relations and dynamics. This thesis is based on both sides of information diffusion: first by developing mathematical theories and models to study the relationships between people and information, and in a second time by creating tools to better exploit the hidden patterns in these relationships. The theoretical tools developed in this thesis are opinion dynamics models and information diffusion models, where we study the information flow from users in social networks, and the practical tools developed in this thesis are a novel community detection algorithm and a novel trend detection algorithm. We start by introducing an opinion dynamics model in which agents interact with each other about several distinct opinions/contents. In our framework, agents do not exchange all their opinions with each other, they communicate about randomly chosen opinions at each time. We show, using stochastic approximation algorithms, that under mild assumptions this opinion dynamics algorithm converges as time increases, whose behavior is ruled by how users choose the opinions to broadcast at each time. We develop next a community detection algorithm which is a direct application of this opinion dynamics model: when agents broadcast the content they appreciate the most. Communities are thus formed, where they are defined as groups of users that appreciate mostly the same content. This algorithm, which is distributed by nature, has the remarkable property that the discovered communities can be studied from a solid mathematical standpoint. In addition to the theoretical advantage over heuristic community detection methods, the presented algorithm is able to accommodate weighted networks, parametric and nonparametric versions, with the discovery of overlapping communities a byproduct with no mathematical overhead. In a second part, we define a general framework to model information diffusion in social networks. The proposed framework takes into consideration not only the hidden interactions between users, but as well the interactions between contents and multiple social networks. It also accommodates dynamic networks and various temporal effects of the diffusion. This framework can be combined with topic modeling, for which several estimation techniques are derived, which are based on nonnegative tensor factorization techniques. Together with a dimensionality reduction argument, this techniques discover, in addition, the latent community structure of the users in the social networks. At last, we use one instance of the previous framework to develop a trend detection algorithm designed to find trendy topics in a social network. We take into consideration the interaction between users and topics, we formally define trendiness and derive trend indices for each topic being disseminated in the social network. These indices take into consideration the distance between the real broadcast intensity and the maximum expected broadcast intensity and the social network topology. The proposed trend detection algorithm uses stochastic control techniques in order calculate the trend indices, is fast and aggregates all the information of the broadcasts into a simple one-dimensional process, thus reducing its complexity and the quantity of necessary data to the detection. To the best of our knowledge, this is the first trend detection algorithm that is based solely on the individual performances of topics
129

Machine Learning Algorithms for Influence Maximization on Social Networks

Abhishek Kumar Umrawal (16787802) 08 August 2023 (has links)
<p>With an increasing number of users spending time on social media platforms and engaging with family, friends, and influencers within communities of interest (such as in fashion, cooking, gaming, etc.), there are significant opportunities for marketing firms to leverage word-of-mouth advertising on these platforms. In particular, marketing firms can select sets of influencers within relevant communities to sponsor, namely by providing free product samples to those influencers so that so they will discuss and promote the product on their social media accounts.</p><p>The question of which set of influencers to sponsor is known as <b>influence maximization</b> (IM) formally defined as follows: "if we can try to convince a subset of individuals in a social network to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?'' Under standard diffusion models, this optimization problem is known to be NP-hard. This problem has been widely studied in the literature and several approaches for solving it have been proposed. Some approaches provide near-optimal solutions but are costly in terms of runtime. On the other hand, some approaches are faster but heuristics, i.e., do not have approximation guarantees.</p><p>In this dissertation, we study the influence maximization problem extensively. We provide efficient algorithms for solving the original problem and its important generalizations. Furthermore, we provide theoretical guarantees and experimental evaluations to support the claims made in this dissertation.</p><p>We first study the original IM problem referred to as the discrete influence maximization (DIM) problem where the marketer can either provide a free sample to an influencer or not, i.e., they cannot give fractional discounts like 10% off, etc. As already mentioned the existing solution methods (for instance, the simulation-based greedy algorithm) provide near-optimal solutions that are costly in terms of runtime and the approaches that are faster do not have approximation guarantees. Motivated by the idea of addressing this trade-off between accuracy and runtime, we propose a community-aware divide-and-conquer framework to provide a time-efficient solution to the DIM problem. The proposed framework outperforms the standard methods in terms of runtime and the heuristic methods in terms of influence.</p><p>We next study a natural extension of the DIM problem referred to as the fractional influence maximization (FIM) problem where the marketer may offer fractional discounts (as opposed to either providing a free sample to an influencer or not in the DIM problem) to the influencers. Clearly, the FIM problem provides more flexibility to the marketer in allocating the available budget among different influencers. The existing solution methods propose to use a continuous extension of the simulation-based greedy approximation algorithm for solving the DIM problem. This continuous extension suggests greedily building the solution for the given fractional budget by taking small steps through the interior of the feasible region. On the contrary, we first characterize the solution to the FIM problem in terms of the solution to the DIM problem. We then use this characterization to propose an efficient greedy approximation algorithm that only iterates through the corners of the feasible region. This leads to huge savings in terms of runtime compared to the existing methods that suggest iterating through the interior of the feasible region. Furthermore, we provide an approximation guarantee for the proposed greedy algorithm to solve the FIM problem.</p><p>Finally, we study another extension of the DIM problem referred to as the online discrete influence maximization (ODIM) problem, where the marketer provides free samples not just once but repeatedly over a given time horizon and the goal is to maximize the cumulative influence over time while receiving instantaneous feedback. The existing solution methods are based on semi-bandit instantaneous feedback where the knowledge of some intermediate aspects of how the influence propagates in the social network is assumed or observed. For instance, which specific individuals became influenced at the intermediate steps during the propagation? However, for social networks with user privacy, this information is not available. Hence, we consider the ODIM problem with full-bandit feedback where no knowledge of the underlying social network or diffusion process is assumed. We note that the ODIM problem is an instance of the stochastic combinatorial multi-armed bandit (CMAB) problem with submodular rewards. To solve the ODIM problem, we provide an efficient algorithm that outperforms the existing methods in terms of influence, and time and space complexities.</p><p>Furthermore, we point out the connections of influence maximization with a related problem of disease outbreak prevention and a more general problem of submodular maximization. The methods proposed in this dissertation can also be used to solve those problems.</p>
130

Spam Analysis and Detection for User Generated Content in Online Social Networks

Tan, Enhua 23 July 2013 (has links)
No description available.

Page generated in 0.0477 seconds