• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 240
  • 129
  • 18
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 433
  • 433
  • 283
  • 267
  • 76
  • 68
  • 55
  • 52
  • 41
  • 40
  • 39
  • 39
  • 36
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Self-organization map in complex network / Mapas organizativos em redes complexas

Pimenta, Mayra Mercedes Zegarra 25 June 2018 (has links)
The Self-Organization Map (SOM) is an artificial neural network that was proposed as a tool for exploratory analysis in large dimensionality data sets, being used efficiently for data mining. One of the main topics of research in this area is related to data clustering applications. Several algorithms have been developed to perform clustering in data sets. However, the accuracy of these algorithms is data depending. This thesis is mainly dedicated to the investigation of the SOM from two different approaches: (i) data mining and (ii) complex networks. From the data mining point of view, we analyzed how the performance of the algorithm is related to the distribution of data properties. It was verified the accuracy of the algorithm based on the configuration of the parameters. Likewise, this thesis shows a comparative analysis between the SOM network and other clustering methods. The results revealed that in random configuration of parameters the SOM algorithm tends to improve its acuracy when the number of classes is small. It was also observed that when considering the default configurations of the adopted methods, the spectral approach usually outperformed the other clustering algorithms. Regarding the complex networks approach, we observed that the network structure has a fundamental influence of the algorithm accuracy. We evaluated the cases at short and middle learning time scales and three different datasets. Furthermore, we show how different topologies also affect the self-organization of the topographic map of SOM network. The self-organization of the network was studied through the partitioning of the map in groups or communities. It was used four topological measures to quantify the structure of the groups such as: modularity, number of elements per group, number of groups per map, size of the largest group in three network models. In small-world (SW) networks, the groups become denser as time increases. An opposite behavior is found in the assortative networks. Finally, we verified that if some perturbation is included in the system, like a rewiring in a SW network and the deactivation model, the system cannot be organized again. Our results enable a better understanding of SOM in terms of parameters and network structure. / Um Mapa Auto-organizativo (da sigla SOM, Self-organized map, em inglês) é uma rede neural artificial que foi proposta como uma ferramenta para análise exploratória em conjuntos de dados de grande dimensionalidade, sendo utilizada de forma eficiente na mineração de dados. Um dos principais tópicos de pesquisa nesta área está relacionado com as aplicações de agrupamento de dados. Vários algoritmos foram desenvolvidos para realizar agrupamento de dados, tendo cada um destes algoritmos uma acurácia específica para determinados tipos de dados. Esta tese tem por objetivo principal analisar a rede SOM a partir de duas abordagens diferentes: mineração de dados e redes complexas. Pela abordagem de mineração de dados, analisou-se como o desempenho do algoritmo está relacionado à distribuição ou características dos dados. Verificou-se a acurácia do algoritmo com base na configuração dos parâmetros. Da mesma forma, esta tese mostra uma análise comparativa entre a rede SOM e outros métodos de agrupamento. Os resultados revelaram que o uso de valores aleatórios nos parâmetros de configuração do algoritmo SOM tende a melhorar sua acurácia quando o número de classes é baixo. Observou-se também que, ao considerar as configurações padrão dos métodos adotados, a abordagem espectral usualmente superou os demais algoritmos de agrupamento. Pela abordagem de redes complexas, esta tese mostra que, se considerarmos outro tipo de topologia de rede, além do modelo regular geralmente utilizado, haverá um impacto na acurácia da rede. Esta tese mostra que o impacto na acurácia é geralmente observado em escalas de tempo de aprendizado curto e médio. Esse comportamento foi observado usando três conjuntos de dados diferentes. Além disso, esta tese mostra como diferentes topologias também afetam a auto-organização do mapa topográfico da rede SOM. A auto-organização da rede foi estudada por meio do particionamento do mapa em grupos ou comunidades. Foram utilizadas quatro medidas topológicas para quantificar a estrutura dos grupos em três modelos distintos de rede: modularidade, número de elementos por grupo, número de grupos por mapa, tamanho do maior grupo. Em redes de pequeno mundo, os grupos se tornam mais densos à medida que o tempo aumenta. Um comportamento oposto a isso é encontrado nas redes assortativas. Apesar da modularidade, tem um alto valor em ambos os casos.
72

Modelando a atenção seletiva e a saliência visual através de redes complexas / Modeling the selective attention and visual saliency using complex networks

Rigo, Gustavo Vrech 22 July 2010 (has links)
A atenção seletiva é uma característica central do sistema visual humano, uma vez que todo o cérebro é otimizado de modo a perceber as informações ao seu redor da forma mais rápida possível. Porém, em geral os trabalhos nesta área apenas verificam quais são as regiões de maior freqüência da atenção seletiva, dando pouca importância para a sua mecânica. A presente dissertação propõe um modelo que represente a atenção seletiva como uma rede complexa, combinando naturalmente as áreas de redes complexas, cadeias de Markov, análise de imagens, atenção seletiva e saliência visual num modelo biologicamente plausível para simular a atenção seletiva. O modelo propõe que pontos importantes da imagem, pontos salientes, sejam caracterizados como vértices da rede complexa, e que as arestas sejam distribuídas de acordo com a probabilidade da mudança de atenção entre dois vértices. Desta forma, a mecânica da atenção seletiva seria simulada pela mecânica da rede complexa correspondente. Foram estudadas imagens em níveis de cinza, sendo estas correspondentes à cena observada. A probabilidade de mudança entre duas regiões, as arestas da rede, foram definidas através de diversos métodos de composição da saliência visual, e as redes resultantes comparadas com redes complexas provenientes de um experimento protótipo realizado. A partir deste experimento foram propostos refinamentos no modelo original, tornando assim a mecânica do modelo o mais próximo possível da mecânica humana da atenção seletiva. / Selective attention is a central feature of the human visual system, since the entire brain is optimized in order to understand the information around as quickly as possible. In general works in this area only search which regions has a higher frequency of selective attention, with little consideration for their mechanics. This study proposes a model that represents the selective attention as a complex network, combining naturally areas of complex networks, Markov chains, image analysis, selective attention and visual salience in a biologically plausible model to simulate the selective attention. The model proposes that the important points of the image, salient points, are identified as vertices of the complex network, and the edges are distributed according to the probability of shift of attention between two vertices. Thus, the mechanics of selective attention would be simulated by the mechanics of correspondent complex network. We studied images in gray levels, which are corresponding to the scene observed. The probability of switching between two regions, the edges of the network were identified through various methods of visual saliency composition, and the resulting networks compared with complex networks from a prototype experiment performed. From this experiment were proposed refinements to the original model, thereby making the mechanical design as close as possible to the mechanics of human selective attention.
73

Construção de redes usando estatística clássica e Bayesiana - uma comparação / Building complex networks through classical and Bayesian statistics - a comparison

Thomas, Lina Dornelas 13 March 2012 (has links)
Nesta pesquisa, estudamos e comparamos duas maneiras de se construir redes. O principal objetivo do nosso estudo é encontrar uma forma efetiva de se construir redes, especialmente quando temos menos observações do que variáveis. A construção das redes é realizada através da estimação do coeficiente de correlação parcial com base na estatística clássica (inverse method) e na Bayesiana (priori conjugada Normal - Wishart invertida). No presente trabalho, para resolver o problema de se ter menos observações do que variáveis, propomos uma nova metodologia, a qual chamamos correlação parcial local, que consiste em selecionar, para cada par de variáveis, as demais variáveis que apresentam maior coeficiente de correlação com o par. Aplicamos essas metodologias em dados simulados e as comparamos traçando curvas ROC. O resultado mais atrativo foi que, mesmo com custo computacional alto, usar inferência Bayesiana é melhor quando temos menos observações do que variáveis. Em outros casos, ambas abordagens apresentam resultados satisfatórios. / This research is about studying and comparing two different ways of building complex networks. The main goal of our study is to find an effective way to build networks, particularly when we have fewer observations than variables. We construct networks estimating the partial correlation coefficient on Classic Statistics (Inverse Method) and on Bayesian Statistics (Normal - Invese Wishart conjugate prior). In this current work, in order to solve the problem of having less observations than variables, we propose a new methodology called local partial correlation, which consists of selecting, for each pair of variables, the other variables most correlated to the pair. We applied these methods on simulated data and compared them through ROC curves. The most atractive result is that, even though it has high computational costs, to use Bayesian inference is better when we have less observations than variables. In other cases, both approaches present satisfactory results.
74

Dinâmica molecular e redes complexas no estudo da difusão térmica em xilanases da família 11 / Molecular dynamics and complex networks in the study of thermal diffusion in family 11 xylanases

Censoni, Luciano Borges 25 July 2013 (has links)
Proteínas tipicamente são capazes de manter a sua conformação funcional somente dentro de um intervalo limitado de temperaturas. A despeito do maquinário sofisticado de manutenção da homeostase celular, é sabido que uma variedade de fenômenos moleculares são capazes de induzir desequilíbrios localizados de energia vibracional, e que a eficiência com que cada proteína dissipa estas perturbações pode estar relacionada com a sua tolerância a altas temperaturas. No entanto, a transferência de energia térmica entre diferentes segmentos de uma cadeia proteica é difícil de caracterizar experimentalmente. Uma alternativa teórica para a investigação destes mecanismos é o emprego de simulações de Dinâmica Molecular, particularmente associadas à técnica de Difusão Térmica Anisotrópica (ATD). Aqui, verificamos a possibilidade de empregar conceitos da teoria de Redes Complexas para construir modelos para estruturas de proteínas, e por meio destes identificar resíduos com capacidade significativa de dissipar perturbações térmicas. Investigamos os diversos protocolos de construção de modelos de rede para proteínas encontrados na literatura, e utilizamos dados experimentais representativos da base SCOP para calcular com rigor os parâmetros numéricos necessários. Produzimos uma definição precisa para o conceito de contato entre resíduos de aminoácidos, e a partir desta calculamos a centralidade de cada resíduo. Com isto, demonstramos que, em um conjunto de Xilanases para as quais dispomos de dados de ATD, a capacidade de difundir perturbações térmicas é fortemente correlacionada com a centralidade de proximidade de cada resíduo, fornecendo argumentos para o uso de modelos de rede para estudar a termoestabilidade de proteínas. / Proteins are typically able to mantain a functional conformation only within a narrow range of temperatures. In spite of the complex cellular homeostatic machinery, it is known that a variety of molecular phenomena can induce localized vibrational imbalances, and that the efficiency with which each protein dissipates these perturbations may be related to its tolerance of higher temperatures. The transference of thermal energy among different sections of a protein chain is, however, hard to characterize experimentally. A theoretical alternative for the investigation of these mechanisms is the use of Molecular Dynamics simulations, particularly when associated with the Anisotropic Thermal Diffusion (ATD) technique. In this work, we verify the possibility of using concepts from Network Theory to construct models for protein structures, and using those to reveal residues with significant ability to dissipate thermal perturbations. We investigate several protocols of network model construction for proteins present in the literature, and we study representative experimental data from the SCOP database to rigorously calculate the necessary parameters. We produce a precise definition for the concept of contact between amino acid residues, and from this we calculate the centrality of each residue. We then show that, in a set of Xylanases for which we have data from ATD experiments, the ability to dissipate thermal perturbations is highly correlated to the closeness centrality of each residue, providing arguments for the use of network models to study protein thermal stability.
75

Classificação de textos com redes complexas / Using complex networks to classify texts

Amancio, Diego Raphael 29 October 2013 (has links)
A classificação automática de textos em categorias pré-estabelecidas tem despertado grande interesse nos últimos anos devido à necessidade de organização do número crescente de documentos. A abordagem dominante para classificação é baseada na análise de conteúdo dos textos. Nesta tese, investigamos a aplicabilidade de atributos de estilo em tarefas tradicionais de classificação, usando a modelagem de textos como redes complexas, em que os vértices representam palavras e arestas representam relações de adjacência. Estudamos como métricas topológicas podem ser úteis no processamento de línguas naturais, sendo a tarefa de classificação apoiada por métodos de aprendizado de máquina, supervisionado e não supervisionado. Um estudo detalhado das métricas topológicas revelou que várias delas são informativas, por permitirem distinguir textos escritos em língua natural de textos com palavras distribuídas aleatoriamente. Mostramos também que a maioria das medidas de rede depende de fatores sintáticos, enquanto medidas de intermitência são mais sensíveis à semântica. Com relação à aplicabilidade da modelagem de textos como redes complexas, mostramos que existe uma dependência significativa entre estilo de autores e topologia da rede. Para a tarefa de reconhecimento de autoria de 40 romances escritos por 8 autores, uma taxa de acerto de 65% foi obtida com métricas de rede e intermitência de palavras. Ainda na análise de estilo, descobrimos que livros pertencentes ao mesmo estilo literário tendem a possuir estruturas topológicas similares. A modelagem de textos como redes também foi útil para discriminar sentidos de palavras ambíguas, a partir apenas de informação topológica dos vértices, evidenciando uma relação não trivial entre sintaxe e semântica. Para algumas palavras, a discriminação com redes complexas foi ainda melhor que a estratégia baseada em padrões de recorrência contextual de palavras polissêmicas. Os estudos desenvolvidos nesta tese confirmam que aspectos de estilo e semânticos influenciam na organização estrutural de conceitos em textos modelados como rede. Assim, a modelagem de textos como redes de adjacência de palavras pode ser útil não apenas para entender mecanismos fundamentais da linguagem, mas também para aperfeiçoar aplicações reais quando combinada com métodos tradicionais de processamento de texto. / The automatic classification of texts in pre-established categories is drawing increasing interest owing to the need to organize the ever growing number of electronic documents. The prevailing approach for classification is based on analysis of textual contents. In this thesis, we investigate the applicability of attributes based on textual style using the complex network (CN) representation, where nodes represent words and edges are adjacency relations. We studied the suitability of CN measurements for natural language processing tasks, with classification being assisted by supervised and unsupervised machine learning methods. A detailed study of topological measurements in texts revealed that several measurements are informative in the sense that they are able to distinguish meaningful from shuffled texts. Moreover, most measurements depend on syntactic factors, while intermittency measurements are more sensitive to semantic factors. As for the use of the CN model in practical scenarios, there is significant correlation between authors style and network topology. We achieved an accuracy rate of 65% in discriminating eight authors of novels with the use of network and intermittency measurements. During the stylistic analysis, we also found that books belonging to the same literary movement could be identified from their similar topological features. The network model also proved useful for disambiguating word senses. Upon employing only topological information to characterize nodes representing polysemous words, we found a strong relationship between syntax and semantics. For several words, the CN approach performed surprisingly better than the method based on recurrence patterns of neighboring words. The studies carried out in this thesis confirm that stylistic and semantic aspects play a crucial role in the structural organization of word adjacency networks. The word adjacency model investigated here might be useful not only to provide insight into the underlying mechanisms of the language, but also to enhance the performance of real applications implementing both CN and traditional approaches.
76

Efeito da amostragem nas propriedades topológicas de redes complexas / Sampling effect on the topological properties of complex networks

Boas, Paulino Ribeiro Villas 19 June 2008 (has links)
Muitos sistemas complexos naturais ou construídos pelos seres humanos podem ser representados por redes complexas, uma teoria que une o estudo de grafos com a mecânica estatística. Esse tipo de representação, porém, pode ser comprometido pela maneira como os dados são obtidos. Em geral, os dados utilizados para representar tais sistemas nem sempre são precisos ou completos e correspondem a apenas amostras pequenas de redes maiores, como é o caso da teia mundial (WWW). Dessa forma, mesmo que as amostras sejam grandes, as suas propriedades são diretamente afetadas pela maneira como elas são obtidas e podem não corresponder com as de suas respectivas redes originais. Por exemplo, a amostragem mais utilizada para captura de roteadores da Internet, se empregada em redes aleatórias, tende a obter redes sem escala como resultado. Em contrapartida, amostras de redes sem escala não têm garantia de preservar essa estrutura. Por causa desses e outros problemas que possam ocorrer na amostragem das redes, é muito importante avaliar a variação das propriedades das redes a ruídos (para saber quais variam menos, sendo, portanto, mais adequadas para caracterizar redes com problemas de amostragem) e os efeitos da amostragem na caracterização, classificação e análise de redes complexas (pois redes amostradas podem não corresponder ao sistemas dos quais foram obtidas, tornando os resultados incorretos). Neste trabalho, foi investigada a influência de três tipos de perturbação (ruído): adição, remoção e troca aleatória de conexões nas propriedades de redes complexas, e as mais apropriadas para caracterizar redes amostradas foram identificadas. Além disso, foram definidas duas novas estruturas em redes complexas: árvores de borda e cadeias de vértices. A ocorrência dessas estruturas em redes mal amostradas tende a ser alta, indicando que existe uma relação com redes parcialmente amostradas. Para verificar tal hipótese, foi investigada a presença de cadeias de vértices em redes gradativamente amostradas por caminhadas aleatórias. / Several natural or human made complex systems can be represented by complex networks a theory which integrates the study of graphs with statistical mechanics. This kind of representation, however, can be biased by the way in which the data is obtained. In general, the data used to represent such systems is not always accurate, as in the case of theWorldWideWeb (WWW). Therefore, even if the sampled networks are large, their properties are directly affected by the way in which they were obtained and may not correspond to those of their respective original networks. For instance, the most used sampling methodology for capturing routers of the Internet, if performed on random networks, tends to obtain scale-free networks as results. On the other hand, sampled scale-free networks are not guaranteed to have this property. Because of these and other problems which may occur during the network sampling, it is very important to evaluate the variation of the network properties with respect to noise (in order to know which of them have less variation, being therefore more suitable for the characterization of networks with sampling problems) and the effect of sampling in the characterization, classification, and analysis of complex networks. In this work, we investigated the effect of three types of perturbations (noise), namely, edge addition, removal, and rewiring on the respectively estimated complex network properties, and the most suitable properties to characterize sampled networks were identified. Furthermore, two novel structures in complex networks were defined, namely, border trees and chains of vertices, which are possibly related to sampling. The occurrence of these structures in poorly-sampled networks was found to be high, implying a relation with partially sampled networks. In order to investigate such a hypothesis, the presence of chains of vertices was investigated in networks which were gradually sampled by random walks.
77

Modelagem de grãos confinados em invólucros utilizando redes complexas e métodos de imagem / Confined grain modeling using complex networks and image processing methods

Rigo, Gustavo Vrech 11 June 2015 (has links)
A formação de arcos – estruturas que promovem a anisotropia de forças dentro de um sistema – acontece corriqueiramente dentro de silos ou maquinaria agrícola. A presente tese propõe um modelo baseado em redes complexas para modelar tal fenômeno, definindo cada grão como vértice e a força que dois grãos trocam como o peso de uma ligação entre eles. A partir de ensaios tomográficos de 11 diferentes tipos de grãos foi desenvolvido um método para transformar cada uma das imagens tridimensionais resultantes numa rede complexa. Cada imagem foi pré-processada e submetida a uma transformada watershed utilizando como marcadores internos a erosão da própria imagem. Este processo tridimensional resultou na segmentação de cada um dos grãos da imagem original, tornando possível a extração de propriedades físicas de cada grão, como massa, centro de massa, momento de inércia, e as forças às quais este está submetido. A partir destes dados, a rede complexa de cada uma das 11 amostras foi construída. A amostra da soja foi comparada com um padrão-ouro pré-estabelecido possibilitando eventuais refinos no método. As reconstruções tridimensionais segmentadas de cada amostra apresentaram um resultado visual aceitável, embora algumas segmentações tenham sofrido com o efeito do elemento estruturante da erosão, uma vez que este tem de ser grande o suficiente para segmentar grãos adjacentes, porém não o suficiente para super-segmentar um único grão. A rede complexa formada a partir da imagem de soja foi submetida a uma análise mais profunda, estudando e normalizando sua propriedade strength, uma natural candidata para detectar anisotropia de forças. Os vértices com alto valor normalizado de strength foram definidos como o arco da estrutura, e sua análise visual permitiu concluir que estes de fato são os elementos responsáveis pela estrutura do arranjo, assim como substanciar o sucesso do método aqui proposto em detectar automaticamente o arco utilizando uma imagem tridimensional. / The formation of arches – structures that promotes force anisotropy within a system – appears routinely inside silos or agricultural machinery. This current thesis proposes a method for modeling this phenomenon as a complex network, defining each grain as vertex and a force that two grains exchanges as the weight of the link between them. By using computed tomography, 3D images were taken from 11 grain samples, and a method developed to transform each of this resulting images in a complex network. Each image had to be pre-processed and subjected to a watershed transform using as inner markers the erosion of the image itself. This process resulted in three-dimensional segmentation of each grain of the original image, allowing the estimation of the physical properties of each grain, such as mass, center of mass, moment of inertia and the forces to which the grain is subjected. From these measures, the complex network of each of the 11 samples was constructed. Sample soybeans were compared with a gold-standard, allowing improvements to the methodology. The segmented three-dimensional reconstructions of each sample provided acceptable visual output, although some samples suffered from erosion due to the structural element size, since it must be large enough to segment adjacent grains, but not enough to super-segment a single grain. The complex network obtained from the soybeans image was subjected to further analysis, studying and normalizing its strength property, a natural candidate to detect force anisotropy. Vertices with high normalized values of strength were understood as defining the arch of the structure, and its visual analysis showed that these indeed are the elements responsible for the arrangement structure. These results support the ability of the proposed method in automatically detecting the arches using as input a three-dimensional image.
78

Estudo da relação estrutura-dinâmica em redes modulares / Unveiling the relationship between structure and dynamics on modular networks

Comin, César Henrique 26 April 2016 (has links)
Redes complexas têm sido cada vez mais utilizadas para a modelagem e análise dos mais diversos sistemas da natureza. Um dos tópicos mais estudados na área de redes está relacionado com a identificação e caracterização de grupos de nós mais conectados entre si do que com o restante da rede, chamados de comunidades. Neste trabalho, mostramos que comunidades podem ser caracterizadas por quatro classes gerais de propriedades, relacionadas com a topologia interna, dinâmica interna, fronteira topológica, e fronteira dinâmica das comunidades. Verificamos como estas diferentes características influenciam em dinâmicas ocorrendo sobre a rede. Em especial, estudamos o inter-relacionamento entre a topologia e a dinâmica das comunidades para cada uma dessas quatro classes de atributos. Mostramos que certas propriedades provocam a alteração desse inter-relacionamento, dando origem ao que chamamos de comportamento específico de comunidades. De forma a apresentarmos e analisarmos este conceito nos quatro casos considerados, estudamos as seguintes combinações topológicas e dinâmicas. Na primeira, investigamos o passeio aleatório tradicional ocorrendo sobre redes direcionadas, onde mostramos que a direção das conexões entre comunidades é o principal fator de alteração no relacionamento topologia-dinâmica. Aplicamos a metodologia proposta em uma rede real, definida por módulos corticais de animais do gênero Macaca. O segundo caso estudado aborda o passeio aleatório enviesado ocorrendo sobre redes não direcionadas. Mostramos que o viés associado às transições da dinâmica se tornam cada vez mais relevantes com o aumento da modularidade da rede. Verificamos também que a descrição da dinâmica a nível de comunidades possibilita modelarmos com boa acurácia o fluxo de passageiros em aeroportos. A terceira análise realizada envolve a dinâmica neuronal integra-e-dispara ocorrendo sobre comunidades geradas segundo o modelo Watts-Strogatz. Mostramos que as comunidades podem possuir não apenas diferentes níveis de ativação dinâmica, como também apresentar diferentes regularidades de sinal dependendo do parâmetro de reconexão utilizado na criação das comunidades. Por último, estudamos a influência das posições de conexões inibitórias na dinâmica integra-e-dispara, onde mostramos que a inibição entre comunidades dá origem a interessantes variações na ativação global da rede. As análises realizadas revelam a importância de, ao modelarmos sistemas reais utilizando redes complexas, considerarmos alterações de parâmetros do modelo na escala de comunidades. / There has been a growing interest in modeling diverse types of real-world systems through the tools provided by complex network theory. One of the main topics of research in this area is related to the identification and characterization of groups, or communities, of nodes more densely connected between themselves than with the rest of the network. We show that communities can be characterized by four general classes of features, associated with the internal topology, internal dynamics, topological border, and dynamical border of the communities. We verify that these characteristics have direct influence on the dynamics taking place over the network. Particularly, for each considered class we study the interdependence between the topology and the dynamics associated with each network community. We show that some of the studied properties can influence the topology-dynamics interdependence, inducing what we call the communities specific behavior. In order to present and characterize this concept on the four considered classes, we study the following combinations of network topology and dynamics. We first investigate traditional random walks taking place on a directed network. We demonstrate that, for this dynamics, the direction of the edges between communities represents the main method for the modification of the topology-dynamics relationship. We apply the developed approach on a real-world network, defined by the connectivity between cortical regions in primates of the Macaca genus. The second studied case considers the biased random walk on undirected networks. We demonstrate that the transition bias of this dynamics becomes more relevant for higher network modularity. In addition, we show that the biased random walk can be used to model with good accuracy the passenger flow inside the communities of two airport networks. The third analysis is done on a neuronal dynamics, called integrate-and-fire, applied to networks composed of communities generated by the Watts-Strogatz model. We show that the considered communities can not only posses distinct dynamical activation levels, but also yield different signal regularity. Lastly, we study the influence of the positions of inhibitory connections on the integrate-and-fire dynamics. We show that inhibitory connections placed between communities can have a non-trivial influence on the global behavior of the dynamics. The current study reveals the importance of considering parameter variations of network models at the scale of communities.
79

Development of new models for authorship recognition using complex networks / Desenvolvimento de novos modelos para reconhecimento de autoria com a utilização de redes complexas

Marinho, Vanessa Queiroz 14 July 2017 (has links)
Complex networks have been successfully applied to different fields, being the subject of study in different areas that include, for example, physics and computer science. The finding that methods of complex networks can be used to analyze texts in their different complexity levels has implied in advances in natural language processing (NLP) tasks. Examples of applications analyzed with the methods of complex networks are keyword identification, development of automatic summarizers, and authorship attribution systems. The latter task has been studied with some success through the representation of co-occurrence (or adjacency) networks that connect only the closest words in the text. Despite this success, only a few works have attempted to extend this representation or employ different ones. Moreover, many approaches use a similar set of measurements to characterize the networks and do not combine their techniques with the ones traditionally used for the authorship attribution task. This Masters research proposes some extensions to the traditional co-occurrence model and investigates new attributes and other representations (such as mesoscopic and named entity networks) for the task. The connectivity information of function words is used to complement the characterization of authors writing styles, as these words are relevant for the task. Finally, the main contribution of this research is the development of hybrid classifiers, called labelled motifs, that combine traditional factors with properties obtained with the topological analysis of complex networks. The relevance of these classifiers is verified in the context of authorship attribution and translationese identification. With this hybrid approach, we show that it is possible to improve the performance of networkbased techniques when they are combined with traditional ones usually employed in NLP. By adapting, combining and improving the model, not only the performance of authorship attribution systems was improved, but also it was possible to better understand what are the textual quantitative factors (measured through networks) that can be used in stylometry studies. The advances obtained during this project may be useful to study related applications, such as the analysis of stylistic inconsistencies and plagiarism, and the analysis of text complexity. Furthermore, most of the methods proposed in this work can be easily applied to many natural languages. / Redes complexas vem sendo aplicadas com sucesso em diferentes domínios, sendo o tema de estudo de distintas áreas que incluem, por exemplo, a física e a computação. A descoberta de que métodos de redes complexas podem ser utilizados para analisar textos em seus distintos níveis de complexidade proporcionou avanços em tarefas de processamento de línguas naturais (PLN). Exemplos de aplicações analisadas com os métodos de redes complexas são a detecção de palavras-chave, a criação de sumarizadores automáticos e o reconhecimento de autoria. Esta última tarefa tem sido estudada com certo sucesso através da representação de redes de co-ocorrência (ou adjacência) de palavras que conectam apenas as palavras mais próximas no texto. Apesar deste sucesso, poucos trabalhos tentaram estender essas redes ou utilizar diferentes representações. Além disso, muitas das abordagens utilizam um conjunto semelhante de medidas de redes complexas e não combinam suas técnicas com as utilizadas tradicionalmente na tarefa de reconhecimento de autoria. Esta pesquisa de mestrado propõe extensões à modelagem tradicional de co-ocorrência e investiga a adequabilidade de novos atributos e de outras modelagens (como as redes mesoscópicas e de entidades nomeadas) para a tarefa. A informação de conectividade de palavras funcionais é utilizada para complementar a caracterização da escrita dos autores, uma vez que essas palavras são relevantes para a tarefa. Finalmente, a maior contribuição deste trabalho consiste no desenvolvimento de classificadores híbridos, denominados labelled motifs, que combinam fatores tradicionais com as propriedades fornecidas pela análise topológica de redes complexas. A relevância desses classificadores é verificada no contexto de reconhecimento de autoria e identificação de translationese. Com esta abordagem híbrida, mostra-se que é possível melhorar o desempenho de técnicas baseadas em rede ao combiná-las com técnicas tradicionais em PLN. Através da adaptação, combinação e aperfeiçoamento da modelagem, não apenas o desempenho dos sistemas de reconhecimento de autoria foi melhorado, mas também foi possível entender melhor quais são os fatores quantitativos textuais (medidos via redes) que podem ser utilizados na área de estilometria. Os avanços obtidos durante este projeto podem ser utilizados para estudar aplicações relacionadas, como é o caso da análise de inconsistências estilísticas e plagiarismos, e análise da complexidade textual. Além disso, muitos dos métodos propostos neste trabalho podem ser facilmente aplicados em diversas línguas naturais.
80

Análise de robustez em redes complexas / Analysis of Robustness in Complex Networks

Barbieri, André Luiz 14 February 2011 (has links)
A teoria das redes complexas é uma área relativamente nova da Ciência, inspirada por dados empíricos tais como os obtidos de interações biológicas e sociais. Esta área apresenta uma natureza altamente interdisciplinar, de modo que tem unido cientistas de diferentes áreas, tais como matemática, física, biologia, ciência computação, sociologia, epidemiologia e muitas outras. Um dos problemas fundamentais nessa área é entender como a organização de redes complexas influencia em processos dinâmicos, como sincronização, propagação de epidemias e falhas e ataques. Nessa dissertação, é apresentada uma análise da relação entre estrutura e robustez de redes complexas através da remoção de vértices. Para a aplicação deste estudo, foram adquiridas bases de dados de interações de proteínas de quatro espécies, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster e Homo sapiens, como também mapas das malhas de rodovias de sete países, Brasil, Portugal, Polônia, Romênia, Austrália, Índia e África do Sul. Foi estudada a robustez dessas redes através de simulação de falhas e ataques, segundo uma dinâmica de remoção de vértices. Nesse caso, a variação na estrutura das redes devido a essa remoção foi quantificada pelas medidas do tamanho da maior componente conectado, do diâmetro e da média dos comprimentos dos menores caminhos. Ademais, foram utilizadas duas medidas para quantificar a robustez, isto é, a entropia da distribuição das conexões e entropia dinâmica, baseada em cadeias de Markov. Tais medidas foram aplicadas nas redes reais onde se verificou que as espécies mais complexas, como o homem e a mosca, apresentam as redes mais robustas. Com relação aos países, Romênia, Portugal e Brasil apresentam as malhas rodoviárias mais resistentes a perturbações. A correlação entre essas medidas de entropia e as medidas topológicas permitiu identificar que a média do grau dos vizinhos e o coeficiente da lei de potência da distribuição do número de conexões são as medidas que apresentam maior correlação com as medidas de entropia. Tal resultado sugere que a presença de conexões alternativas entre os vizinhos dos vértices removidos favorece a resiliência das redes, pois tendem a minimizar as perturbações causadas pelas remoções. No caso das malhas rodoviárias, foi proposta uma nova medida de acessibilidade e esta se mostrou altamente correlacionada com a entropia dinâmica. Nesse caso, verificou-se que as cidades localizadas no litoral e nas fronteiras dos países são as que menos contribuem para robustez das redes de rodovias. Desse modo, os resultados obtidos sugerem que o planejamento do sistema de transporte de um país deve priorizar o investimento em infra-estrutura rodoviária próximo das cidades com menor acessibilidade, de forma a torná-las mais acessíveis, visando melhorar o transporte de mercadorias e pessoas. Os métodos aqui propostos permitem identificar tais cidades. Ademais, na análise de redes de proteínas, os resultados obtidos podem auxiliar no desenvolvimento de novos modelos de redes, bem como entender os mecanismos evolutivos que priorizam a robustez dos organismos. / The study of complex networks is a relatively new area of science inspired by the empirical studies of real-world networks, such as social and biological networks. This are has a highly multidisciplinary nature, which has brought together researchers from many areas including mathematics, physics, biology, computer science, sociology, epidemiology, statistics and others. One of the main problems in this area is to know how the network organization is related to dynamic process, such as synchronization, epidemic spreading and topological perturbation due to deletion of nodes and edges. In this dissertation, it is presented a study of the relationship between the structure and resilience of complex networks. This investigation was applied to the protein-protein networks of four species, namely Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens, as well as the road networks of seven countries, i.e. Brazil, Portugal, Romania, Australia, India, and South Africa. It was studied the resilience of such networks through simulations of random fails and attacks by node deletion. The topological changes due to this simulation were quantified by measures, including the size of the largest component, the diameter and the average shortest path length. In addition, the network robustness was quantified by the entropy of the degree distribution and the dynamic entropy, related to Markov chains. This analysis in real-world networks revealed that more complex species, such as the H. sapiens and D. melanogaster are the most resilient. In addition, Romania, Brazil and Portugal have the most robust road maps. The correlation analysis between topological and dynamic measures revealed that the average neighborhood degree and the coefficient of scaling in the power law of the degree distribution quantify the proprieties that most contribute for the resilience in protein networks. Moreover, with respect to the road networks, it was introduced a new accessibility measure, which revealed to be correlated to the dynamic entropy. In fact, cities localized in the border of networks are the ones with the smallest contribution for the network resilience. Therefore, the obtained results suggest that the traffic planning should mainly connect cities near the frontiers of countries, in order to improve the resilience and accessibility. In addition, the obtained results with respect to protein networks allow improving network modeling and understanding the biological processes that reinforce the resilience of organisms.

Page generated in 0.0375 seconds