541 |
Novel High Voltage Electrodes for Li-ion BatteriesTripathi, Rajesh January 2013 (has links)
An alternate family of “high” voltage (where the equilibrium voltage lies between 3.6 V and 4.2 V) polyanion cathode materials is reported in this thesis with the objective of improving specific energy density (Wh/kg) and developing a better understanding of polyanion electrochemistry. The electrochemical properties, synthesis and the structure of novel fluorosulfate materials crystallizing in the tavorite and the triplite type mineral structures are described. These materials display highest discharge voltages reported for any Fe2+/Fe3+ redox couple. LiFeSO4F was prepared in both the tavorite and the triplite polymorphs using inexpensive and scalable methods. Complete structural characterization was performed using X-ray and neutron based diffraction methods. A rapid synthesis of fluorosulfates can be achieved by using microwave heating. The local rapid heating created by the microwaves generates nanocrystalline LiFeSO4F tavorite with defects that induce significant microstrain. To date, this is unique to the microwave synthesis method. Phase transformation to the more stable triplite framework, facilitated by the lattice defects which include hydroxyl groups, is therefore easily triggered. The formation of nanocrystalline tavorite leads to nanocrystalline triplite, which greatly favors its electrochemical performance because of the inherently disordered nature of the triplite structure. Direct synthesis of the electrochemically active triplite type compound can be carried out either by extending the duration of the solvothermal reactions or by the partial substitution of Fe by Mn to produce LiFe1-xMnxSO4F. This study, overall, has led to a better understanding of the transformation of tavorite to the triplite phase.
To examine Li and the Na ion conduction and their correlation with the electrochemical performance of 3-D, 2-D and 1-D ion conductors, atomistic scale simulations have been used to investigate tavorite type LiFeSO4F, NaFeSO4F, olivine type NaMPO4 (M= Fe, Mn, Fe0.5Mn0.5) and layered Na2FePO4F. These calculations predict high mobility of the Li-ion in the tavorite type LiFeSO4F but sluggish Na-ion transport in iso-structural NaFeSO4F. High mobility of the Na-ion is predicted for phosphate layered and olivine structures.
Finally, the synthesis and structural details of NaMSO4F (M=Fe, Mn) and NH4MSO4F (M=Fe, Mn) are presented in the last chapter to show the structural diversity present in the fluorosulfate family.
|
542 |
Systemic effects of occupational exposure to arsenic : with special reference to peripheral circulation and nerve functionLagerkvist, Birgitta Json January 1989 (has links)
Smelter workers who were exposed to air-borne arsenic for a mean of 23 years, and age-matched referents, were examined with clinical, physiological, and neurophysiological methods. Exposure to arsenic in workroom air was estimated to have been around the Swedish occupational limits, which were 500 yg/m before 1975 and 50 yg/ra thereafter. An increased preval ence of Raynaud's phenomenon and a reduced finger systolic blood pressure (FSP) during local and general cooling were found in the smelter workers. Slight, but significant sub-clinical neuropathy, in the form of slightly reduced nerve conduction velocity (NCV) in two or more peripheral nerves, was more common among the arsenic workers than among the referents. There were positive correlations between cumulative exposure to arsenic, reduced NCV in three peripheral motor nerves, and decrease in FSP during cooling. Arsenic levels in urine were 1 ymole/1 (75 yg/1) in the arsenic workers and 0.1 ymole/1 in the referents. In 21 arsenic workers with no or very low exposure to vibra ting hand tools, the FSP during cooling had increased significantly after 3 years wit h the lower arsenic exposure. There was no change in FSP during the summer vacation, whereas urinary levels of arsenic decreased to normal values. Thus there seems to be a slow improvement of finger blood circ ulation which is independent of short-term fluctuations in the exposure to arsenic. No seasonal variation was found in FSP during cooling with the standardized method used. When the NCV-measurements were repeated five years later the difference between arsenic workers and referents had increased, despite the fact that 14 of the 47 arsenic workers had had no exposure to arsenic during the last 1-5 years. These observations indicate, that in subjects with long term exposure to arsenic, sub-clinical neuropathy is not reversible. Ten milligrams of Ketanserin, a serotonin receptor antagonist, was given intravenously to five arsenic workers with cold-induced vasospasm. Skin temperature and FSP during cooling increased significantly with Ketanserin as compared wit h saline solution. After oral treatment, 2 x 40 mg /day for four weeks, no significant increase of FSP during cooling or rise in skin temperature was found in six arsenic workers and eleven patients with Raynaud's phenomenon. The decrease of vasospastic tendency after intravenous injection of Ketanserin indicated that similar mechanisms might operate in arsenic-induced and other types of Raynaud's phenomenon. A general co nclusion from the five studies in this dissertation is that long-term occupational exposure to arsenic has had adverse effects on the peripheral circulation and nerve conduction. The tendency to vasospasm, but not the sub-clinical neuropathy, seemed to be reversible with decreasing exposure. / <p>S. 1-54: sammanfattning, s. 55-112: 5 uppsatser</p> / digitalisering@umu
|
543 |
Mechanisms of excitability in the central and peripheral nervous systems : Implications for epilepsy and chronic painTigerholm, Jenny January 2012 (has links)
The work in this thesis concerns mechanisms of excitability of neurons. Specifically, it deals with how neurons respond to input, and how their response is controlled by ion channels and other active components of the neuron. I have studied excitability in two systems of the nervous system, the hippocampus which is responsible for memory and spatial navigation, and the peripheral C–fibre which is responsible for sensing and conducting sensory information to the spinal cord. Within the work, I have studied the role of excitability mechanisms in normal function and in pathological conditions. For hippocampus the normal function includes changes in excitability linked to learning and memory. However, it also is intimately linked to pathological increases in excitability observed in epilepsy. In C–fibres, excitability controls sensitivity to responses to stimuli. When this response becomes enhanced, this can lead to pain. I have used computational modelling as a tool for studying hyperexcitability in neurons in the central nervous system in order to address mechanisms of epileptogenesis. Epilepsy is a brain disorder in which a subject has repeated seizures (convulsions) over time. Seizures are characterized by increased and highly synchronized neural activity. Therefore, mechanisms that regulate synchronized neural activity are crucial for the understanding of epileptogenesis. Such mechanisms must differentiate between synchronized and semi synchronized synaptic input. The candidate I propose for such a mechanism is the fast outward current generated by the A-type potassium channel (KA). Additionally, I have studied the propagation of action potentials in peripheral axons, denoted C–fibres. These C–fibres mediate information about harmful peripheral stimuli from limbs and organs to the central nervous system and are thereby linked to pathological pain. If a C–fibre is activated repeatedly, the excitability is altered and the mechanisms for this alteration are unknown. By computational modelling, I have proposed mechanisms which can explain this alteration in excitability. In summary, in my work I have studied roles of particular ion channels in excitability related to functions in the nervous system. Using computational modelling, I have been able to relate specific properties of ion channels to functions of the nervous system such as sensing and learning, and in particular studied the implications of mechanisms of excitability changes in diseases. / <p>QC 20102423</p>
|
544 |
Conduction protonique au sein d'un électrolyte pour pile à combustible : BaCeO3 dopé GdHermet, Jessica 21 October 2013 (has links) (PDF)
Cette thèse vise à étudier la diffusion protonique, et dans une moindre mesure ionique, au sein d'un matériau électrolyte pour pile à combustible BaCeO3 dopé Gd, en adoptant une démarche multi-échelle. Tout d'abord, des calculs ab initio ont été réalisés afin de déterminer les positions stables des défauts protoniques OH_O et des lacunes d'oxygène VO dans le matériau. Puis, en utilisant toujours le formalisme de la théorie de la fonctionnelle de la densité, les barrières d'énergies pour les deux types de défauts entre deux positions stables ont été calculées. Enfin, ces barrières ont été utilisées dans un algorithme de Monte-Carlo cinétique afin de simuler des trajectoires de protons et de lacunes d'oxygène. Cette méthode permet d'accéder à des grandeurs macroscopiques, accessibles expérimentalement, telles que l'énergie d'activation, le coefficient de diffusion ou la mobilité, en se basant uniquement sur des données atomiques issues de simulations ab initio. Le gadolinium semble être un dopant intéressant pour le cérate de barium au vu de son faible pouvoir attractif sur le proton : il permet ainsi la création de nombreuses lacunes d'oxygène, qui pourront incorporer des molécules d'eau, sans toutefois piéger l'hydrogène. Ces deux conditions sont nécessaires pour obtenir un bon électrolyte pour les oxides solides conducteurs de protons.
|
545 |
放熱量最大化を目的とした非定常熱伝導場の形状最適化AZEGAMI, Hideyuki, IWATA, Yutaro, KATAMINE, Eiji, 畔上, 秀幸, 岩田, 侑太朗, 片峯, 英次 07 1900 (has links)
No description available.
|
546 |
非定常熱伝導場における形状同定問題の解法片峯, 英次, Katamine, Eiji, 畔上, 秀幸, Azegami, Hideyuki, 松浦, 易広, Matsuura, Yasuhiro 01 1900 (has links)
No description available.
|
547 |
Development of polymer electrolyte membranes for fuel cells to be operated at high temperature and low humidityZhou, Zhen 09 April 2007 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have been looked as potential alternative energy conversion devices to conventional energy conversion systems such as combustion engines. Proton conducting membranes (PEMs) are one critical component of PEMFCs. The development of novel electrolyte membranes with dense structure, good mechanical flexibility, and high proton conductivity, but with little or no dependence on humidity at temperatures above 100¡ãC remains an important challenge to the realization of practical PEM fuel cells. In this thesis, to solve the technical difficulties existing in current high temperature PEM systems based on phosphoric acid and imidazole, a new type of proton conducting species 1H-1,2,3-triazole has been explored, and proved to have high proton conductivity and also enough electrochemical stability for fuel cell applications. In further experiments, effective methods have been developed to synthesize triazole derivatives and polymers. The properties of the synthesized polymers have studied and reported in this thesis. Preliminary computational simulations have also been performed to study the proton conducting mechanism to provide intrinsic information of the proton conducting process in 1H-1,2,3-triazole. In the final part, research works on other proton conducting species including H3PO4 and other heterocycles have been reported.
|
548 |
Investigação das propriedades físicas do sistema titanato de bário modificado com íons doadores nos sítios A e/ou B /Oliveira, Marco Aurélio de January 2017 (has links)
Orientador: José de los Santos Guerra / Resumo: O titanato de bário (BaTiO3, BT) é um material ferroelétrico com diversas aplicações, dentro do mercado de componentes eletrônicos, devido às excelentes propriedades físicas que manifesta, em relação a outros sistemas ferroelétricos, continuando a atrair durante várias décadas o interesse científico e comercial. Dentre o grande número de trabalhos sobre o sistema BT reportados na literatura muitos são associados à vasta gama de aplicações para a indústria eletro-eletrônica, dentre as quais se destacam o uso em dispositivos para capacitores, termistores, entre outros. A dopagem do BaTiO3 com íons doadores implica na mudança de algumas propriedades físicas, que conduzem a comportamentos anómalos em determinados parâmetros físicos, cuja natureza ainda não tem sido muito esclarecida, embora muitos trabalhos tenham se empenhado para tentar justificar tais efeitos. Neste contexto, neste trabalho, as propriedades físicas do sistema BaTiO3 serão investigadas considerando a adição de elementos doadores, nos sítios A e B da estrutura. Em particular, os íons de gadolínio (Gd3+) e nióbio (Nb5+) serão usados como modificadores da estrutura perovskita em substituição dos íons de bário (Ba2+) e titânio (Ti4+) nos sítios A e B, respectivamente, considerando as fórmulas químicas Ba1-xGdxTiO3 e BaTi1-x NbxO3 (sendo x = 0.001, 0.002, 0.003, 0.004 e 0.005). As propriedades estruturais e microestruturais foram investigadas à temperatura ambiente, enquanto as propriedades dielétricas e elétricas f... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
|
549 |
Constructal design de materiais de alta condutividade em forma de "Y" para refrigeração de corpo gerador de calorHorbach, Cristina Santos January 2013 (has links)
O presente trabalho utiliza o método Constructal Design para desenvolver o estudo numérico da configuração de materiais de alta condutividade térmica em forma de “Y” que minimiza a resistência ao fluxo de calor, quando áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes. Para a solução numérica da equação diferencial da difusão do calor e suas respectivas condições de contorno, foi utilizado o software MATLAB ®, mais especificamente a ferramenta PDETOOL, Partial Differential Equations Tool. O objetivo deste trabalho é a minimização da resistência térmica do sistema gerador de calor com baixa condutividade térmica com a utilização de vias em formato de Y com material de alta condutividade térmica e volume constante, sendo variáveis os comprimentos e espessuras do material dos ramos simples e bifurcados. Todas as possibilidades geométricas foram avaliadas e a geometria ótima foi aquela que conduziu a menor resistência térmica. Duas condições são apresentadas, a primeira tem os ramos e a base da geometria “Y” com igual condutividade térmica. Os resultados para esta configuração mostram que existem valores específicos para os graus de liberdade que minimizam a resistência térmica. Nesse caso, os ramos se degeneraram e a configuração ótima tem a forma de um “V”. A segunda configuração apresenta combinações de condutividade térmica diferentes, para os ramos e a bases. Para estes casos obteve-se um valor otimizado próximo de 1 para a razão entre os comprimentos dos ramos simples e bifurcados, indicando que a configuração otimizada tem realmente a forma de um “Y” o que demonstra a dependência entre a geometria e as condições impostas pelo meio. Embora o design inicial do Y possa assumir diversas configurações, quando comparado o primeiro design com o design final, no caso do Y com iguais condutividades térmicas se conseguiu uma melhora superior a 28% e no caso do Y com condutividades diferentes mais de 30 %. Finalmente, este trabalho mostra que a geometria otimizada é aquela que melhor distribui as imperfeições, isto é, os pontos quentes (pontos de temperatura máxima), o que está de acordo com o princípio da ótima distribuição das imperfeições. / The present work used the method Constructal Design to develop numerical analyses of pathways of high thermal conductivity in "Y" shape which minimizes the thermal resistance when areas occupied by the materials of high and low conductivities are kept constant. For the numerical solution of the differential equations of heat diffusion and their boundary conditions, we used the MATLAB ® software, specifically the PDETOOL tool. The aim was to minimize the thermal resistance of the heat generator system with low thermal conductivity with the use of Y-shaped pathways with high thermal conductivity and constant volume, with variable lengths and thicknesses of material from stem and forked branches. All geometric possibilities were evaluated and the optimal geometry was that which resulted in lower thermal resistance. Two conditions were studied. In the first one the stem and branches of the "Y" have equal thermal conductivity. The results for this configuration show that there are specific values for the degrees of freedom to minimize the thermal resistance. In this case, the branches have degenerated and the optimum configuration has the shape of a "V". The second configuration offers different combinations of thermal conductivity, for branches and bases. For these cases we obtained a optimized value close to 1 for the ratio between the lengths of stem and bifurcated branches, indicating that the optimized configuration actually has the shape of a "Y" which shows the dependency of geometry and condition imposed by the environment. Although the initial design of Y can take various configurations, when compared the first design to the final design, in the case of Y with equal thermal conductivity it this improvement was achieved an improvement greater than 28% and in the case of Y with different conductivities over 30%. Finally, this study showed that the optimized geometry is the one that better distributes imperfections, this is, hot spots (points of maximum temperature), which is in accordance with the principle of the optimal distribution of imperfections.
|
550 |
Mecanismos de condução e relaxação elétrica em cerâmicas multiferróicas de Pb(Fe2/3W1/3)O3 e Pb(Fe1/2Nb1/2)O3Silva, Roney Carlos da 19 December 2013 (has links)
Made available in DSpace on 2016-06-02T20:15:32Z (GMT). No. of bitstreams: 1
5887.pdf: 17427536 bytes, checksum: 86a72410b26eb5474b5d0a693e193449 (MD5)
Previous issue date: 2013-12-19 / Financiadora de Estudos e Projetos / Multiferroic are materials which have at least two of the three ferroics orders: ferromagnetism, ferroelectricity and/or ferroelasticity. The coupling between these properties, make multiferroic materials of great technological and scientific interest, mainly in the design of new devices such as sensors and spintronic devices. The lead iron tungstate Pb(Fe2=3W1=3)O3 (PFW) is a relaxor multiferroic with ferroelectric transition TC ~ 180K and antiferromagnetic TN ~ 340K, it is a member of the relaxor ferroelectrics family with perovskite structure, in which the two types of cations (Fe3+ e W6+) are randomly distributed in the B site, causing the formation of polar nanoregions (or clusters) of order/disorder at microscopic scale, which would be the origin of the relaxor behavior. Lead iron niobate Pb(Fe1=2Nb1=2)O3 (PFN) is a ferroelectric with diffuse phase transition (DPT) around TC ~ 380K and antiferromagnetic, with the G-type ordering below the Néel temperature, reported in TN ~ 143K. This material has a high dielectric constant, and excellent ferroelectric properties. The Pb2+, at site A, and Nb5+, at site B are responsible for the ferroelectric order, as the Fe3+ at site B is responsible to provide the necessary magnetic moment for the magnetic ordering. In this work, the electrical conduction and relaxation mechanism of multiferroics PFW and PFN ceramics were investigated. The PFW and PFN samples were prepared by solid state reaction method through two stages. This method was effective to obtain samples with majoritary perovskite phase (95,6% and 95,7%), respectively. After the densification process through sintering methods used in this work (conventional sintering, hot pressing and spark plasma), the perovskite phase was increased, being almost 100 %. The samples of PFW and PFN obtained by the different densification techniques, were dense and practically free of pores. For the analysis of the dielectric response of the samples, it was proposed in this work, an analysis protocol, which was effective to find the responsible mechanisms for the dielectric response of the studied materials. Two relaxation processes were identified for each studied sample, which were labeled as: PR-1, PR-2 or PR *. These processes can be attributed to the interfacial polarization and polarization by hopping, occurring due to the presence of defects in the lattice, such as the oxygen vacancies and lead vacancies. From the dependence of the DC electrical conductivity versus temperature, it was possible to identify regions with different mechanisms of electrical conduction for the samples of PFW and PFN. These mechanisms are, thermally activated at high temperatures, hopping of small polarons at intermediate temperatures and variable range hopping at low temperatures. / Multiferróicos são materiais que têm pelo menos duas das três ordens ferróicas: ferromagnetismo, ferroeletricidade e/ou ferroelasticidade. O acoplamento entre essas propriedades, faz com que os materiais multiferróicos despertem um grande interesse científico e tecnológico, principalmente na concepção de novos dispositivos, como sensores e dispositivos de spintrônica. O tungstanato de ferro e chumbo Pb(Fe2=3W1=3)O3 (PFW) é um multiferróico relaxor com transição ferroelétrica TC ~ 180K e antiferromagnética TN ~ 340K, ele é membro da família dos ferroelétricos relaxores com uma estrutura perovskita, em que os dois tipos de cátions (Fe3+ e W6+) são aleatoriamente distribuídos no sítio B, fazendo com que em escala microscópica existam nanoregiões polares (ou clusters) de ordem/desordem neste sítio, que seriam a origem do comportamento relaxor. O niobato de ferro e chumbo Pb(Fe1=2Nb1=2)O3 (PFN) é um ferroelétrico com transição de fase difusa (TFD) ao redor de TC ~ 380K, e antiferromagnético, com ordenamento do tipo-G abaixo da temperatura de Néel reportada em TN ~ 143K. Ele ainda apresenta uma alta constante dielétrica, além de excelentes propriedades ferroelétricas. Neste material o Pb2+, no sítio A, e Nb5+, no sítio B são responsáveis pelo ordenamento ferroelétrico, enquanto o Fe3+ no sítio B é responsável em fornecer o momento magnético necessário para o ordenamento magnético. Neste trabalho, os mecanismos de condução e relaxação elétrica das cerâmicas multiferróicas de PFW e PFN foram investigados. As amostras de PFW e PFN foram preparadas por reação de estado sólido através do método de dois estágios, que se mostrou eficaz na obtenção de amostras com fase perovskita majoritaria (95,6% e 95,7%), respectivamente. De modo geral, essas amostras ao passar pelo processo de densificação através dos métodos de sinterização utilizados nesse trabalho (sinterização convencional, sinterização por prensagem uniaxial a quente e sinterização por spark plasma), tiveram suas fases perovskitas majoritarias aumentadas, chegando à praticamente 100%. As amostras de PFW e PFN, obtidas pelas diferentes técnicas de densificação, mostraram-se densas e praticamente livres de poros. Para análise da resposta dielétrica apresentada por essas amostras, foi proposto neste trabalho um protocolo de análise, que se mostrou eficaz em descrever o comportamento da resposta dielétrica apresentado pelas mesmas. Foram identificados dois processos de relaxação para cada amostra em estudo, os quais foram identificados por: PR-1, PR-2 ou PR*. Esses processos podem ser atribuídos à polarização interfacial e à polarização por salto, os quais ocorrem pela presença de defeitos na rede, tais como, as vacâncias de oxigênio e as vacâncias de chumbo. Através da dependência da condutividade elétrica DC em função da temperatura, foi possível identificar regiões com diferentes mecanismos de condução para as amostras de PFW e PFN. Dentre eles estão, ativação térmica em altas temperaturas, hopping de pequenos polarons em temperaturas intermediárias e hopping de alcance variável em baixas temperaturas.
|
Page generated in 0.0448 seconds