1 |
The Rigidity of the SphereHavens, Paul C., Havens 29 April 2016 (has links)
No description available.
|
2 |
Construction de surfaces à courbure moyenne constante et surfaces minimales par des méthodes perturbatives / Construction of constant mean curvature and minimal surfaces by perturbation methodsZolotareva, Tatiana 29 January 2016 (has links)
Cette thèse s'inscrit dans l'étude des sous-variétés minimales et à courbure moyenne constante et de l'influence de la géométrie de la variété ambiante sur les solutions de ce problème.Dans le premier chapitre, en suivant les idées de F. Almgren, on propose une généralisation de la notion d'hypersurface de courbure moyenne constante à toutes codimensions. En dimension n-k on définie les sous-variétés à courbure moyenne constante comme les points critiques de la fonctionnelle de k-volume des bords des variétés minimales de dimension k+1. On prouve l'existence dans une variété riemannienne compacte de dimension n de sous-variétés à courbure moyenne constante de codimension n-k pour tout k < n qui sont des perturbations des sphères géodésiques de petit volume.Dans le deuxième chapitre, on s'intéresse aux surfaces minimales à bords libres dans la boule unité de l'espace euclidien de dimension 3, c'est-à-dire aux surfaces minimales plongées dans la boule unité dont le bord rencontre la sphère unité orthogonalement. On démontre l'existence de deux famille géométriquement distinctes de telles surfaces qui sont indexées par un entier n assez grand, qui représente le nombre de composantes connexes du bord de ces surfaces. Nous donnons en particulier une deuxième preuve d'un résultat de A. Fraser et R. Schoen concernant l'existence de telles surfaces.Un des résultats fondamentaux de la théorie des surfaces à courbure moyenne constante est le théorème de Hopf qui affirme que les seules sphères topologiques à courbure moyenne constante dans l'espace euclidien de dimension 3 sont les sphères rondes. Dans le troisième chapitre, on propose une construction dans une variété riemannienne de dimension 3 d'une famille de sphères topologiques à courbure moyenne constante qui ne sont pas convexes et dont la courbure moyenne est très grande. / The subject of this thesis is the study of minimal and constant mean curvature submanifolds and of the influence of the geometry of the ambient manifold on the solutions of this problem.In the first chapter, following the ideas of F. Almgren, we propose a generalization of the notion of hypersurface with constant mean curvature to all codimensions. In codimension n-k we define constant mean curvature submanifolds as the critical points of the functional of the k - dimensional volume of the boundaries of k+1 - dimensional minimal submanifolds. We prove the existence in compact n-dimensional manifolds of n-k codimensional submanifolds with constant mean curvature for all k<n which are perturbations of geodesic spheres of small volume.In the second chapter, we consider free boundary minimal surfaces in the unit ball of the three dimensional Euclidean space, i.e. minimal surfaces embedded in the unit ball and which meet the unit sphere orthogonally. We prove the existence of two geometrically distinct families of such surfaces parametrized by an integer n large enough, which represents the number of the boundary components. In particular, we give an independent proof of the result of A. Fraser and R. Schoen concerning the existence of such surfaces.One of the fundamental results of the theory of constant mean curvature surfaces is the Hopf's theorem which asserts that the only topological spheres with constant mean curvature in the Euclidean 3-space are round spheres. In the third chapter, we propose a construction in a three dimensional Riemannian manifold of a family of nonconvex topological spheres with large constant mean curvature.
|
3 |
Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.Zapata, Juan Fernando Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
|
4 |
Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.Juan Fernando Zapata Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
|
5 |
Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive / Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theoremNguyen, The-Cang 11 December 2015 (has links)
Dans cette thèse nous étudions deux problèmes issus de la relativité générale : la construction de données initiales pour le problème de Cauchy des équations d’Einstein et le théorème de la masse positive. Nous construisons tout d’abord des données initiales en utilisant la méthode dite conforme introduite par Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] et Y. Choquet-Bruhat–J. Isenberg– D. Pollack [Choquet-Bruhat et al., 2007a]. Plus particulièrement, nous étudions les équations –de contrainte conforme– qui apparaissent dans cette méthode sur des variétés riemanniennes compactes de dimension n > 3. Dans cette thèse, nous donnons une preuve simplifiée du résultat de [Dahl et al., 2012], puis nous étendons et nous généralisons les théorèmes de M. Holst–G. Nagy–G. Tsogtgerel [Holst et al., 2009] et de D. Maxwell [Maxwell, 2009] dans le cas de données initiales à courbure moyenne fortement nonconstante. Nous donnons au passage un point de vue unifié sur ces résultats. En parallèle, nous donnons des résultats de non-existence et de non-unicité pour les équations de la méthode conforme sous certaines hypothèses. / The aim of this thesis is the study of two topical issues arising from general relativity: finding initial data for the Cauchy problem with respect to the Einstein equations and the positive mass theorem. For the first issue, in the context of the conformal method introduced by Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] and Y. Choquet-Bruhat–J. Isenberg–D. Pollack [Choquet-Bruhat et al., 2007a], we consider the conformal constraint equations on compact Riemannian manifolds of dimension n > 3. In this thesis, we simplify the proof of [Dahl et al., 2012, Theorem 1.1], extend and sharpen the far-from CMC result proven by Holst– Nagy–Tsogtgerel [Holst et al., 2009], Maxwell [Maxwell, 2009] and give an unifying viewpoint of these results. Besides discussing the solvability of the conformal constraint equations, we will also show nonexistence and nonuniqueness results for solutions to the conformal constraint equations under certain assumptions.
|
6 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
7 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
8 |
Estabilidade de hipersuperfícies com curvatura média constantePaim, Tatiana Sousa January 2018 (has links)
Orientador: Prof. Dr. Márcio Fabiano da Silva / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , Santo André, 2018. / Seja x : M = Rn+1 uma imersão de uma variedaden-dimensional orientável M no espaço
euclidiano Rn+1. A condição que x tem curvatura média constante não-nula H =H0 é conhecida ser equivalente ao fato que x é um ponto crítico de um problema variacional. Um procedimento padrão de encontrar pontos críticos de tais problemas é, análogo ao método dos multiplicadores de Lagrange, olhar para os pontos críticos de um certo operador definido em termos dos funcionais variacionais. Resulta dessas considerações que a definição de estabilidade para imersões com curvatura média constante não-nula deve exigir que a segunda variação para tal operador seja não-negativa, para variações com suporte compacto que satisfaçam a condição de média nula. Assim, o objetivo desse trabalho é estudar as imersões estáveis compactas com curvatura média constante não-nula ¿ resultado apresentado como o Teorema de Barbosa¿Carmo. / Let x : M = Rn+1 be an immersion of an orientablen-dimensional manifoldM into the euclidian space Rn+1. The condition thatx has nonzero constant mean curvature H =H0 is known to be equivalent to the fact thatx is a critical point of a variational problem. A standard proceduce of ?nding the critical points of such a problem is, in analogy to the Lagrange multipliers method, to look for the critical of points of an operator defined in terms of variational functionals. It follows from the above considerations that the definition of stability for immersions with nonzero constant mean curvature should require that such operator be nonnegative, for compactly supported variations that satisfy the zero mean condition. Thus, the objective of this work is to study the compact stable immersions with nonzero constant mean curvature ¿ result presented as the Barbosa and Carmo¿s theorem.
|
9 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
10 |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces / Genericidade das métricas bumpy, bifurcação e estabilidade em hipersuperfícies de CMC e fronteira livreCarlos Wilson Rodríguez Cárdenas 03 December 2018 (has links)
In this thesis we prove the genericity of the set of metrics on a manifold with boundary M^{n+1}, such that all free boundary constant mean curvature (CMC) embeddings \\varphi: \\Sigma^n \\to M^{n+1}, being \\Sigma a manifold with boundary, are non-degenerate (Bumpy Metrics), (Theorem 2.4.1). We also give sufficient conditions to obtain a free boundary CMC deformation of a CMC inmersion (Theorems 3.2.1 and 3.2.2), and a stability criterion for this type of immersions (Theorem 3.3.3 and Corollary 3.3.5). In addition, given a one-parametric family, {\\varphi _t : \\Sigma \\to M} , of free boundary CMC immersions, we give criteria for the existence of smooth bifurcated branches of free boundary CMC immersions for the family {\\varphi_t}, via the implicit function theorem when the kernel of the Jacobi operator J is non-trivial, (Theorems 4.2.3 and 4.3.2), and we study stability and instability problems for hypersurfaces in this bifurcated branches (Theorems 5.3.1 and 5.3.3). / Nesta tese, provamos a genericidade do conjunto de métricas em uma variedade com fronteira M^{n+1}, de modo que todos os mergulhos de curvatura média constante (CMC) e fronteira livre \\varphi : \\Sigma^n \\to M^{n+1}, sendo \\Sigma uma variedade com fronteira, sejam não-degenerados (Métricas Bumpy), (Teorema 2.4.1). Nós também fornecemos condições suficientes para obter uma deformação CMC e fronteira livre de uma imersão CMC (Teoremas 3.2.1 and 3.2.2), e um critério de estabilidade para este tipo de imersões (Teorema 3.3.3 and Corolario 3.3.5). Além disso, dada uma família 1-paramétrica, {\\varphi _t : \\Sigma \\to M} , de imersões de CMC e fronteira livre, damos os critérios para a existência de ramos de bifurcação suaves de imersões CMC e fronteira livre para a familia {\\varphi_t}, por meio de o teorema da função implícita quando o kernel do operador Jacobi J é não-trivial, (Teoremas 4.2.3 and 4.3.2), e estudamos o problema da estabilidade e instabilidade para hipersuperfícies em naqueles ramos de bifurcação (Teoremas 5.3.1 and 5.3.3).
|
Page generated in 0.036 seconds