• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 642
  • 84
  • 37
  • 26
  • 15
  • 12
  • 8
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 997
  • 858
  • 588
  • 496
  • 458
  • 417
  • 403
  • 300
  • 203
  • 186
  • 184
  • 174
  • 162
  • 158
  • 154
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Cooperative edge deepfake detection

Hasanaj, Enis, Aveler, Albert, Söder, William January 2021 (has links)
Deepfakes are an emerging problem in social media and for celebrities and political profiles, it can be devastating to their reputation if the technology ends up in the wrong hands. Creating deepfakes is becoming increasingly easy. Attempts have been made at detecting whether a face in an image is real or not but training these machine learning models can be a very time-consuming process. This research proposes a solution to training deepfake detection models cooperatively on the edge. This is done in order to evaluate if the training process, among other things, can be made more efficient with this approach.  The feasibility of edge training is evaluated by training machine learning models on several different types of iPhone devices. The models are trained using the YOLOv2 object detection system.  To test if the YOLOv2 object detection system is able to distinguish between real and fake human faces in images, several models are trained on a computer. Each model is trained with either different number of iterations or different subsets of data, since these metrics have been identified as important to the performance of the models. The performance of the models is evaluated by measuring the accuracy in detecting deepfakes.  Additionally, the deepfake detection models trained on a computer are ensembled using the bagging ensemble method. This is done in order to evaluate the feasibility of cooperatively training a deepfake detection model by combining several models.  Results show that the proposed solution is not feasible due to the time the training process takes on each mobile device. Additionally, each trained model is about 200 MB, and the size of the ensemble model grows linearly by each model added to the ensemble. This can cause the ensemble model to grow to several hundred gigabytes in size.
172

Neural Network Pruning for ECG Arrhythmia Classification

Labarge, Isaac E 01 April 2020 (has links)
Convolutional Neural Networks (CNNs) are a widely accepted means of solving complex classification and detection problems in imaging and speech. However, problem complexity often leads to considerable increases in computation and parameter storage costs. Many successful attempts have been made in effectively reducing these overheads by pruning and compressing large CNNs with only a slight decline in model accuracy. In this study, two pruning methods are implemented and compared on the CIFAR-10 database and an ECG arrhythmia classification task. Each pruning method employs a pruning phase interleaved with a finetuning phase. It is shown that when performing the scale-factor pruning algorithm on ECG, finetuning time can be expedited by 1.4 times over the traditional approach with only 10% of expensive floating-point operations retained, while experiencing no significant impact on accuracy.
173

Rozpoznávání tváří / Face Recognition

Benda, Tomáš January 2017 (has links)
This thesis deals with human recognition on a videorecording. Convolution neural network was used for face recognition, from which we will get multidimensional vector, which will allow to determine person’s identity. There are demands imposed on the system, for it to be able to work in real time and could be used for example for person recognition at various conferences, or as a part of security system. Whole system is written in Python language. Part of this thesis is dataset in form of videorecords with persons.
174

Detekce anatomických struktur v CT datech s využitím konvolučních neuronových sítí / Detection of specific anatomical structures in CT data via convolutional neural networks

Kozlová, Dominika January 2018 (has links)
This thesis deals with the issue of detection of anatomical structures in medical images using convolutional neural networks (CNN). At first there are described methods of machine learning, convolutional neural networks and selected methods for detection using CNN. In this work was created a database of annotated CT images of ten anatomical structures (head, heart, aorta, left and right lung, spine, liver, left and right kidney, spleen). A method for detecting these structures was designed, that contains two approaches of region proposals from image, CNN and postprocessing to obtain the detection result. The designed algorithm was implemented in the Python programming language using the TensorFlow library. Obtained results of validation of the network and the detection results are presented and discussed in the last chapter.
175

Komprese obrazu pomocí neuronových sítí / Image Compression with Neural Networks

Teuer, Lukáš January 2018 (has links)
This document describes image compression using different types of neural networks. Features of neural networks like convolutional and recurrent networks are also discussed here. The document contains detailed description of various neural network architectures and their inner workings. In addition, experiments are carried out on various neural network structures and parameters in order to find the most appropriate properties for image compression. Also, there are proposed new concepts for image compression using neural networks that are also immediately tested. Finally, a network of the best concepts and parts discovered during experimentation is designed.
176

Segmentace chrupavčité tkáně ve 3D mikro CT snímcích myších embryí / Segmentation of cartilage tissue of mouse embryos in 3D micro CT data

Matula, Jan January 2019 (has links)
Manual segmentation of cartilage tissue in micro CT images of mouse embryos is a very time consuming process and significantly increases the time required for the research of mammal facial structure development. This problem might be solved by using a fully-automatic segmentation algorithm. In this diploma thesis a fully-automatic segmentation method is proposed using a convolutional neural network trained on manually segmented data. The architecture of the proposed convolutional network is based on the U-Net architecture with it's encoding part substituted for the encoding part of the VGG16 classification convolutional neural network pretrained on the ImageNet database of labeled images. The proposed network achieves Dice coefficient 0.8731 ± 0.0326 in comparison to manually segmented images.
177

Evoluční algoritmy v návrhu konvolučních neuronových sítí / Evolutionary Algorithms in Convolutional Neural Network Design

Badáň, Filip January 2019 (has links)
This work focuses on automatization of neural network design via the so-called neuroevolution, which employs evolutionary algorithms to construct artificial neural networks or optimise their parameters. The goal of the project is to design and implement an evolutionary algorithm which can be used in the process of designing and optimizing topologies of convolutional neural networks. The effectiveness of the proposed framework was experimentally evaluated on tasks of image classification on datasets MNIST and CIFAR10 and compared with relevant solutions. The results showed that neuroevolution has a potential to successfully find accurate and effective convolutional neural network architectures.
178

Segmentace klenby lebeční u pacientů po kraniektomii / Segmentation of cranial bone after craniectomy

Vavřinová, Pavlína January 2020 (has links)
This thesis deals with the segmentation of cranial bone in CT patient’s data after craniectomy. The U-Net architecture in 2D and 3D variant were selected for the intention of solving this problem. Jaccard index for 2D U-Net was evaluate as 89,4 % and for 3D U-Net it was 67,1 %. In the area after surgical intervention evaluating index has smaller difference between both variant, the average success rate of skull classification was 98,4 % for 2D U-Net and 97,0 % for 3D U-Net.
179

Detekce intrakraniálních hemoragií v CT snímcích hlavy / Detection of intracranial hemorrhages in head CT data

Nemček, Jakub January 2020 (has links)
This thesis deals with the detection of intracranial haemorrhages and their type classification in head CT images. The method of haemorrhages detection is based on a series of classifiers of the presence and type of haemorrhages in 2D CT slices in axial, sagittal and coronal plane, that may localise the bleedings and determine their types. The classifiers are based on the convolutional neural network architecture Inception-ResNet-v2. The head CT dataset CQ500 which is made available for public access, is used for the experiments. The thesis describes an additional manual annotation of the data, as the available annotations are insufficient for the purposes of the experiments. This thesis includes a theoretical basis of the essential medical knowledge, machine learning based classification and detection methods, and the detection algorithm proposal, realisation and testing. The algorithm performance is evaluated and discussed together with the potential implementation of the algorithm in computer-aided diagnosis systems.
180

Rekonstrukce poškozené části otisku prstů s využitím neuronových sítí / Reconstruction of Damaged Parts of Fingerprint Image Using Neural Nets

Halinár, Michael January 2020 (has links)
This thesis deals with the issue of reconstruction of damaged fingerprints using artificial neural networks. At first, the fingerprint structure is analyzed, after that, the methods that can be used to improve fingerprint quality are described. An introduction to neural networks is given for understanding the basics of artificial neural networks. After choosing the right architecture for the neural networks, the process of its learning is described. A simple graphic user interface was created for this application, which is able to reconstruct synthetic fingerprints damaged by various warts. Another neural net can detect the location of wart. Tests have proven an increase in the quality of fingerprint by 43,5 % in the dataset with ten inserted warts on each fingerprint. The matching score was increased by 6,5 % on this particular dataset.

Page generated in 0.03 seconds