201 |
Creep and dynamic abnormal grain growth of commercial-purity molybdenumCiulik, James R. 21 January 2011 (has links)
In this experimental investigation, the tensile creep behavior of commercial-purity molybdenum sheet at temperatures between 1300°C and 1700°C is critically evaluated, based upon experimental creep testing and microstructural characterizations. The high-temperature properties of molybdenum are of interest because there are many applications in which molybdenum and molybdenum alloys are used at elevated temperatures. Understanding of the creep mechanisms and the constitutive relations between stress and strain at elevated temperatures is needed in order to determine if molybdenum is an appropriate choice for a given high-temperature design application and to accurately predict its creep life. The creep behavior of two commercially-available grades of molybdenum was determined using short-term creep tests (1/2 to 14 hours) at slow to moderate true-strain rates of 10⁻⁶ to 10⁻⁴ s⁻¹ and temperatures between 1300°C and 1700°C. High-temperature, uniaxial tensile testing was used to produce data defining the relationship between tensile creep strain-rate and steady-state flow stress at four temperatures: 1340°C, 1440°C, 1540°C, 1640°C. Microstructural changes that occurred during creep testing were evaluated and compared to changes resulting from elevated temperature exposure alone. Mechanisms for dynamic abnormal grain growth that occurred during creep testing and the causes of the microstructural changes that occurred as a function of temperature are discussed. / text
|
202 |
High temperature creep behaviour niobium bearing ferritic stainless steelsCain, Victoria January 2005 (has links)
A thesis submitted to the Faculty of Engineering in
fulfilment of the requirements for the degree of Master of
Technology in Mechanical Engineering
2005 / The objective of this project was to monitor the high temperature creep behaviour of 441
stainless steel. Two different alloys of 441 were investigated; the main difference
between them being the Niobium content. Particularly imporlant to the project was how
the Niobium content and grain size affected the creep resistance of the material.
Creep tests were performed using purpose built constant load creep test rigs. Initially the
rigs were not suitable for the testing procedures pertaining to this project. This was due to
persistent problems being experienced with regards the reliability and reproducibility of
the rigs. After various modifications were made the results produced from the rigs were
consistent.
Creep test data was used in order to determine the mechanism of creep that is operative
within the material (at a predetermined temperature) under a predetermined load.
Particular attention was paid to the resulting stress exponents. in order to identify the
operative creep mechanism. The identification of the operative creep mechanisms was
also aided by microscopical analysis. This analysis was also necessary to monitor how
the grain size had altered at various annealing temperatures.
Heat treatment was used as a method to alter the high temperature strength and
microstructure of the material. Heat treatments were performed at various temperatures
in order to determine the ideal temperature to promote optimum creep resistance of 441.
All heat treatments were performed in a purpose designed and built high temperature salt
bath furnace. The commissioning of the salt bath formed part of the objectives for this
project.
Sag testing was also conducted, using purpose built sag test rigs. It was necessary to
design and manufacture a sag test rig that could be comparable to the industry accepted
method of sag testing known as the two-point beam method, as this method is believed to
produce inconsistent results.
Conclusions have been drawn from the results of the data and from previous research on
the subject matter.
|
203 |
Tertiary Creep Damage Modeling Of A Transversely Isotropic Ni-based SuperalloyStewart, Calvin 01 January 2009 (has links)
Anisotropic tertiary creep damage formulations have become an increasingly important prediction technique for high temperature components due to drives in the gas turbine industry for increased combustion chamber exit pressures, temperature, and the use of anisotropic materials such as metal matrix composites and directionally-solidified (DS) Ni-base superalloys. Typically, isotropic creep damage formulations are implemented for simple cases involving a uniaxial state of stress; however, these formulations can be further developed for multiaxial states of stress where materials are found to exhibit induced anisotropy. In addition, anisotropic materials necessitate a fully-developed creep strain tensor. This thesis describes the development of a new anisotropic tertiary creep damage formulation implemented in a general-purpose finite element analysis (FEA) software. Creep deformation and rupture tests are conducted on L, T, and 45°-oriented specimen of subject alloy DS GTD-111. Using the Kachanov-Rabotnov isotropic creep damage formulation and the optimization software uSHARP, the damage constants associated with the creep tests are determined. The damage constants, secondary creep, and derived Hill Constants are applied directly into the improved formulation. Comparison between the isotropic and improved anisotropic creep damage formulations demonstrates modeling accuracy. An examination of the off-axis creep strain terms using the improved formulation is conducted. Integration of the isotropic creep damage formulation provides time to failure predictions which are compared with rupture tests. Integration of the improved anisotropic creep damage produces time to failure predictions at intermediate orientations and any state of stress. A parametric study examining various states of stress, and materials orientations is performed to verify the flexibility of the improved formulation. A parametric exercise of the time to failure predictions for various levels of uniaxial stress is conducted.
|
204 |
THE DESIGN, DEVELOPMENT, AND TESTING OF AN ADVANCED NUCLEAR REACTOR IN-SITU CREEP CAPSULE THAT ACCOMMODATES MULTIPLE SPECIMEN GEOMETRIESDulus J Owen (13956051) 13 October 2022 (has links)
<p> </p>
<p>Nuclear reactors operate under extreme environmental conditions, such as neutron bombardment, elevated temperatures, and high pressures. Over time, the harsh environmental conditions affect the material properties of structural materials and fuels. Studying the mechanical properties of structural materials and advanced fuels is common practice that is required to validate the material performance for deployment within the next-generation reactors. Next-generation reactors, such as Generation-IV reactors, will operate in more extreme environments than the current fleet of power reactors, with temperatures reaching potentially over 1,000℃ and the use of corrosive coolants, such as lead, lead-bismuth, and liquid sodium. Studying <em>in-situ</em> mechanical properties, such as irradiation creep, is challenging, particularly in next-generation reactor conditions. The instruments used to measure <em>in-situ</em> irradiation creep must collect data in real-time while experiencing harsh in-reactor conditions. Many historical <em>in-situ</em> creep capsules have implemented a variety of designs to measure irradiation creep. The current study designed, developed, and tested a novel, modular <em>in-situ</em> creep capsule to address the challenges of testing candidate materials for next-generation reactors. The <em>in-situ</em> creep capsule utilizes modern manufacturing methods, instrumentation, and alloying to address extreme environmental temperatures. Implementing modern technology has positioned the critical components of an <em>in-situ</em> creep capsule near the specimen, improving the accuracy of measuring irradiation creep in real-time. The modular design of the <em>in-situ</em> creep capsule allows the testing of various specimen geometries, thus making it a first-of-a-kind.</p>
|
205 |
Age determination of cellulosic fibers from creep measurementsChandrashekar, Venkatramana. January 1984 (has links)
Call number: LD2668 .T4 1984 C52 / Master of Science
|
206 |
In situ microviscoelastic measurements by polarization interferometryWilliams, Valorie Sharron, 1960- January 1988 (has links)
A new type of computer-controlled instrument has been developed to measure microviscoelastic properties of thin materials. It can independently control and measure indentation loads and depths in situ revealing information about material creep and relaxation. Sample and indenter positions are measured with a specially designed polarization interferometer. Indenter loadings can be varied between 0.5 and 10 grams and held constant to ±41 mg. The resulting indentation depths can be measured in situ to ±1.2 nm. The load required to maintain constant indentation depths from 0.1 to 5.0 microns can be measured in situ to ±3.3 mg and the depth held constant to ±15 nm.
|
207 |
Time-dependent behaviour of concrete structures with special referenceto podium and frame structuresLiu, Chi-hong., 廖志航. January 2007 (has links)
published_or_final_version / abstract / Civil Engineering / Doctoral / Doctor of Philosophy
|
208 |
Creep in sands: a study of time dependent deformation of reclamation sand fill under constant effectivestressChing, Peter., 秦培德. January 2001 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science
|
209 |
Unbonded post-tensioned concrete structures in fireGales, John Adam Brian January 2013 (has links)
To achieve thinner and longer floor slabs, rapid construction, and tight control of inservice deflections, modern concrete structures increasingly use high-strength, posttensioned prestressing steel as reinforcement. The resulting structures are called posttensioned (PT) concrete. Post-tensioned concrete slabs are widely believed to benefit from ‘inherent fire endurance.’ This belief is based largely on results from a series of standard fire tests performed on simply-supported specimens some five decades ago. Such tests are of debatable credibility; they do not capture the true structural behaviour of real buildings in real fires, nor do they reflect modern PT concrete construction materials or optimization methods. This thesis seeks to develop a more complete understanding of the structural and thermal response of modern prestressing steel and PT concrete slabs, particularly those with unbonded prestressing steel conditions, to high temperature, in an effort to steer current practice and future research towards the development of defensible, performance-based, safe fire designs. An exhaustive literature review of previous experimentation and real case studies of fire exposed PT concrete structures is presented to address whether current code guidance is adequate. Both bonded and unbonded prestressing steel configurations are considered, and research needs are identified. For unbonded prestressing steel in a localised fire, the review shows that the interaction between thermal relaxation and plastic deformation could result in tendon failure and loss of tensile reinforcement to the concrete, earlier than predicted by available design guidance. Since prestressing steel runs continuously in unbonded PT slabs, local damage to prestressing steel will affect the integrity of adjacent bays in a building. In the event that no bonded steel reinforcement is provided (as permitted by some design codes) a PT slab could lose tensile reinforcement across multiple bays; even those remote from fire. Using existing literature and design guidance, preliminary simplified modelling is presented to illustrate the stress-temperature-time interactions for stressed, unbonded prestressing steel under localised heating. This exercise showed that the observed behaviour cannot be rationally described by the existing design guidance. The high temperature mechanical properties of modern prestressing steel are subsequently considered in detail, both experimentally and analytically. Tests are presented on prestressing steel specimens under constant axial stress at high temperature using a high resolution digital image correlation (DIC) technique to accurately measure deformations. A novel, accurate analytical model of the stresstemperature- time dependent deformation of prestressing steel is developed and validated for both transient and steady-state conditions. Modern prestressing steel behaviour is then compared to its historical prestressing steel counterparts, showing significant differences at high temperature. Attention then turns to other structural actions of a real PT concrete structure (e.g. thermal bowing, restraint, concrete stiffness loss, continuity, spalling, slab splitting etc.) all of which also play inter-related roles influencing a PT slab’s response in fire. A series of three non-standard structural fire experiments on heavily instrumented, continuous, restrained PT concrete slabs under representative sustained service loads were conducted in an effort to better understand the response of PT concrete structures to localised heating. To the author’s knowledge this is the first time a continuous PT slab which includes axial, vertical and rotational restraint has been studied at high temperature, particularly under localised heating. The structural response of all three tests indicates a complex deflection trend in heating and in cooling which differs considerably from the response of a simply supported slab in a standard fire test. Deflection trends in the continuous slab tests were due to a combination of thermal expansion and plastic damage. The test data will enable future efforts to validate computational models which account for the requisite complexities. Overall, the research presented herein shows that some of the design guidance for modern PT concrete slabs is inadequate and should be updated. The high temperature deformation of prestressing steel under localised heating, as would be expected in a real fire, should be considered, since uniform heating of simplysupported elements is both unrealistic and unconservative with respect to tensile rupture of prestressing steel tendons. The most obvious impact of this finding would be to increase the minimum concrete covers required for unbonded PT construction, and to require adequate amounts of bonded steel reinforcement to allow load shedding to the bonded steel at high temperature in the event that the prestressing steel fails or is severely damaged by fire.
|
210 |
Climate Response Of Dahurian Larch In Secrest Arboretum, Wooster, Ohio, USAMoore, Tyler, Malcomb, Nathan, Wiles, Gregory 12 1900 (has links)
Larix gmelinii (Rupr.) Kuzen. (Dahurian larch) is an important arctic tree-line species in the
northern boreal forests of Eurasia. The region’s climate is predicted to change dramatically over the next century, yet little is known about how this species will respond to secular changes in temperature and precipitation. To this end, a ring-width chronology from 25 cores from a stand of seven Dahurian larch trees growing in the Secrest Arboretum, northeastern Ohio, was developed to test the climatic sensitivity of the species in a more temperate climate. The chronology extends from 1931 to 2005 and correlation analysis with monthly precipitation and temperature records shows growth was most strongly limited by summer precipitation until recent decades when sensitivity has shifted to late spring precipitation. The results from this study serve as a contemporary analog to the future growth response of Dahurian larch under warmer and wetter growing conditions in the boreal and arctic regions of Eurasia.
|
Page generated in 0.0319 seconds