• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 8
  • 7
  • 6
  • 2
  • 1
  • Tagged with
  • 65
  • 65
  • 18
  • 16
  • 14
  • 14
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization and Application of CRISPR/Cas Systems for Virus Interference and Diagnostics

Mahas, Ahmed 11 1900 (has links)
The development of molecular tools that enable precise manipulation and control of biological systems would allow for a broader understanding of cellular functions and applications in biotechnology, synthetic biology, and therapeutic research. The discovery of CRISPR/Cas systems and the understanding and repurposing of their mechanisms have revolutionized the field of molecular biology. Here, I identified and characterized novel CRISPR/Cas systems and applied them for different in vivo and in vitro applications. In this work, I interrogated various Cas13 effector proteins and identified the most efficient Cas13 effector (CasRx) for in planta applications. I adapted CasRx to engineer plant immunity against different plant RNA viruses. CasRx showed robust activity and specificity against RNA viruses, demonstrating its suitability for studying key questions relating to virus biology. To expand the Cas13 toolbox and enable new applications, I performed a homology search of Cas13 enzymes in prokaryotic genomes and metagenomes, and identified previously uncharacterized, novel CRISPR/Cas13 effector proteins. I first identified and functionally characterized a small size, miniature Cas13 effector (named here as mCas13) and combined it with isothermal amplification to develop a simple and sensitive CRISPR-based SARS-CoV-2 diagnostic platform. In addition, I discovered and biochemically characterized the first known thermostable Cas13 proteins and showed that these thermostable proteins are phylogenetically related. I harnessed the unique features of these thermostable enzymes to develop the first one-pot, RT-LAMP coupled Cas13-based nucleic acid detection assay, which was utilized for highly sensitive, specific, and easily programmable detection of SARS-CoV-2 and other viruses. Lastly, I utilized CRISPR/Cas12a to develop a detection assay of plant ssDNA geminiviruses with easy-to-interpret visual readouts, making it suitable for point-of-use applications. In addition, I leveraged the self vs. non-self-discrimination and pre-crRNA processing capabilities of CRISPR/Cas12a, with the allosteric transcription factors (aTFs)- regulated expression of CRISPR array to engineer a field-deployable small molecule detection platform. I demonstrated the ability of the developed platform to detect different tetracycline antibiotics with high sensitivity and specificity. In conclusion, my work demonstrates that the discovery and characterization of programmable nucleic acid targeting systems could enable their utility for biotechnological innovations, including technologies for inhibition of viral replication and diagnostics.
12

Targeted Genome Regulation and Editing in Plants

Piatek, Agnieszka Anna 03 1900 (has links)
The ability to precisely regulate gene expression patterns and to modify genome sequence in a site-specific manner holds much promise in determining gene function and linking genotype to phenotype. DNA-binding modules have been harnessed to generate customizable and programmable chimeric proteins capable of binding to site-specific DNA sequences and regulating the genome and epigenome. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like effectors (TALEs) are amenable to engineering to bind any DNA target sequence of interest. Deciphering the code of TALE repeat binding to DNA has helped to engineer customizable TALE proteins capable of binding to any sequence of interest. Therefore TALE repeats provide a rich resource for bioengineering applications. However, the TALE system is limited by the requirement to re-engineer one or two proteins for each new target sequence. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) has been used as a versatile genome editing tool. This machinery has been also repurposed for targeted transcriptional regulation. Due to the facile engineering, simplicity and precision, the CRISPR/Cas9 system is poised to revolutionize the functional genomics studies across diverse eukaryotic species. In this dissertation I employed transcription activator-like effectors and CRISPR/Cas9 systems for targeted genome regulation and editing and my achievements include: 1) I deciphered and extended the DNA-binding code of Ralstonia TAL effectors providing new opportunities for bioengineering of customizable proteins; 2) I repurposed the CRISPR/Cas9 system for site-specific regulation of genes in plant genome; 3) I harnessed the power of CRISPR/Cas9 gene editing tool to study the function of the serine/arginine-rich (SR) proteins.
13

Targeted mutagenesis in medaka using targetable nuclease systems / ゲノム編集ツールを用いたメダカにおける標的遺伝子破壊

Ansai, Satoshi 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19765号 / 農博第2161号 / 新制||農||1039(附属図書館) / 学位論文||H28||N4981(農学部図書室) / 32801 / 京都大学大学院農学研究科応用生物科学専攻 / (主査)教授 佐藤 健司, 教授 澤山 茂樹, 准教授 田川 正朋 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
14

Etablierung von USP8 und USP48 Mutationen in Zelllinien für Cushing-Syndrom Analysen mittels CRISPR/Cas9 / Establishment of USP8 and USP48 mutations in cell lines for cushing-syndrom analyses with CRISPR/Cas9

Rehm, Alexandra January 2022 (has links) (PDF)
Morbus Cushing ist die häufigste Ursache für endogenes Cushing-Syndrom und führt auf Grund eines kortikotropen Hypophysenadenoms zu einem Glucocorticoid Überschuss und wiederum zu einer hohen Morbidität und Mortalität. Die Ursache hierfür sind unter anderem somatische Mutationen in den Deubiquitinasen USP8 und USP48. Das Ziel dieser Arbeit war es mittels der CRISPR/Cas9-Methode, die Mutationen USP8 und USP48 in Zelllinien zu etablieren und diese für Cushing-Syndrom Analysen zu verwenden. Hierfür wurden in dieser Arbeit gRNAs für USP8 und USP48 designt, welche anschließend in die humane embryonale Zelllinie HEK293AD Zellen transfiziert wurden. Diese Zellen wurden zu monoklonalen Zellen vereinzelt. Ziel war einen Knock-out von USP8 bzw. USP48 zu generieren. Es konnte ein erfolgreicher Zellklon generiert werden mit einem Knock-out von USP48. Ebenfalls konnte ein Genomediting von USP8 in Exon 20 durchgeführt werden. Zusammenfassend konnte die CRISPR/Cas9 Methode für ein M. Cushing-Zellmodells etabliert und eine gute Ausgangsbasis für weitere Experimente (z.B. ein gezielter Knock-in von USP8- und USP48- Mutationen) generiert werden. / Cushing disease (CD) is the most common reason for endogenous Cushing syndrome (CS). It is caused by corticotrope adenoma of the pituitary resulting in hypercortisolism that is associated with high morbidity and mortality. One of the underlying reasons are the activating mutations of the deubiquitinase USP8 and USP48. The objective of this work was to establish the USP8 and USP48 mutations in cell lines by the CRISPR/Cas9 method in order to use them for further CS analyses. Therefore, we designed gRNAs against USP8 and USP48 which were transfected into the human embryonal cell line of HEK293AD cells. Those cells were separated to generate monoclonal cell lines entailing the knock-out of either USP8 or USP48. We successfully provided a cell clone with a knock-out of USP48. Furthermore, we were able to edit the genome of USP8 in exon 20. In summary we were able to establish the CRISPR/Cas9 method for a CD cell model and provided a good baseline for further experiments (i.e., creating a knock-in of USP8 and USP48 mutations).
15

Strukturelle Differenzierung und Plastizität präsynaptischer Aktiver Zonen / Structural differentiation and plasticity of presynaptic active zones

Mrestani, Achmed January 2022 (has links) (PDF)
Ziel der vorliegenden Arbeit war die nanoskopische Analyse struktureller Differenzierung und Plastizität präsynaptischer aktiver Zonen (AZs) an der NMJ von Drosophila melanogaster mittels hochauflösender, lichtmikroskopischer Bildgebung von Bruchpilot (Brp). In erster Linie wurde das lokalisationsmikroskopische Verfahren dSTORM angewendet. Es wurden neue Analyse-Algorithmen auf der Basis von HDBSCAN entwickelt, um eine objektive, in weiten Teilen automatisierte Quantifizierung bis auf Ebene der Substruktur der AZ zu ermöglichen. Die Differenzierung wurde am Beispiel phasischer und tonischer Synapsen, die an dieser NMJ durch Is- und Ib-Neurone gebildet werden, untersucht. Phasische Is-Synapsen mit hoher Freisetzungswahrscheinlichkeit zeigten kleinere, kompaktere AZs mit weniger Molekülen und höherer molekularer Dichte mit ebenfalls kleineren, kompakteren Brp-Subclustern. Akute strukturelle Plastizität wurde am Beispiel präsynaptischer Homöostase, bei der es zu einer kompensatorisch erhöhten Neurotransmitterfreisetzung kommt, analysiert. Interessanterweise zeigte sich hier ebenfalls eine kompaktere Konfiguration der AZ, die sich auch auf Ebene der Subcluster widerspiegelte, ohne Rekrutierung von Molekülen. Es konnte demonstriert werden, dass sich eine höhere Moleküldichte in der Lokalisationsmikroskopie in eine höhere Intensität und größere Fläche in der konfokalen Mikroskopie übersetzt, und damit der Zusammenhang zu scheinbar gegensätzlichen Vorbefunden hergestellt werden. Die Verdichtung bzw. Kompaktierung erscheint im Zusammenhang mit der Kopplungsdistanz zwischen VGCCs und präsynaptischen Vesikeln als plausibles Muster der effizienten Anordnung molekularer Komponenten der AZ. Die hier eingeführten Analysewerkzeuge und molekularbiologischen Strategien, basierend auf dem CRISPR/Cas9-System, zur Markierung von AZ-Komponenten können zukünftig zur weiteren Klärung der Bedeutung der molekularen Verdichtung als allgemeines Konzept der AZ-Differenzierung beitragen. / The aim of this work was a nanoscopic analysis of structural differentiation and plasticity of presynaptic active zones (AZs) at the NMJ of Drosophila melanogaster using super-resolution light microscopy of Bruchpilot (Brp). The localization microscopy technique dSTORM was primarily used. New analysis algorithms based on HDBSCAN were developed to ensure objective and largely automatized quantification including the substructure of the AZ. Differentiation was assessed using the model of phasic and tonic neurons that are represented by type Is and type Ib neurons at this NMJ. Phasic Is synapses with higher release probability displayed smaller, more compact AZs with less molecules and an enhanced molecular density with smaller, more compact Brp subclusters. For acute structural plasticity the model of presynaptic homeostasis, which is accompanied by a compensatory increase of neurotransmitter release, was used. Interestingly, this again showed a more compact arrangement of the AZ, that was also found in Brp subclusters, without addition of molecules. It could be demonstrated that a higher molecular density in localization microscopy translates into a higher intensity and area in confocal microscopy and, thus, the apparent discrepancy to earlier studies could be explained. With respect to the coupling distance between VGCCs and presynaptic vesicles compaction appears to be a plausible mechanism for an efficient remodeling of AZ components. The analysis tools and molecular biology strategies, based on the CRISPR/Cas9-System, introduced here will be useful to further clarify the importance of molecular compaction as a general concept of AZ differentiation.
16

CRISPR/Cas9-basierte Etablierung Alkalischer Phosphatase-defizienter odontogener Zelllinien zur Analyse der dentalen Aspekte der Hypophosphatasie / CRISPR/Cas9-based establishment of alkaline phosphatase deficient odontogenous cell lines to analyze dental aspects of Hypophosphatasia

Paulus [verh. Rehling], Sofia January 2023 (has links) (PDF)
Die Hypophosphatasie (HPP) ist eine seltene Erberkrankung, welche durch compound-heterozygote oder dominant negative heterozygote Mutationen des ALPL Gens zu einem Funktionsverlust der gewebeunspezifischen Alkalischen Phosphatase (TNAP) führt. Die daraus resultierenden Mineralisierungsstörungen betreffen sowohl den Knochen als auch in milderen Ausprägungsformen die Zähne und den Zahnhalteapparat. Das zahnmedizinische Leitsymptom und in vielen Fällen das erste Anzeichen der HPP ist dabei der vorzeitige Verlust der Milchzähne ohne physiologische Wurzelresorption. Im Rahmen dieser Arbeit wurden verschiedene TNAP defiziente immortalisierte Zellen des parodontalen Ligaments (PDL) mittels der CRISPR/Cas9 Methode generiert und anschließend fünf Zelllinien charakterisiert. Die dabei entstandenen Mutationen variierten von einer moderaten heterozygoten Punktmutation zu einer schwerwiegenden homozygoten Deletion eines einzelnen Nukleotids, welche in einem vorzeitigen Stopcodon resultierte. Analysen der ALPL Expression (qPCR), TNAP Aktivitätsmessungen (CSPD Assay) und TNAP Färbungen zeigten einen signifikanten Rückgang in allen TNAP-defizienten Zelllinien mit einer starken Korrelation zwischen der Restaktivität und dem Ausmaß der Mutation, welche in Einklang mit der komplexen Genotyp-Phänotyp Korrelation bei HPP zu bringen ist. Das Potential der osteogenen Differenzierung der hTERT PDL Zellen wurde in der homozygot mutierten Zelllinie komplett unterdrückt. Mögliche Mechanismen des vorzeitigen Zahnverlustes bei HPP Patienten ist die geminderte Formation und Mineralisation des Wurzelzements und die fehlerhafte Insertion der parodontalen Fasern. Die hier erstmalig etablierten Zellkulturmodelle liefern ein valides spenderunabhängiges in vitro Modell der HPP, welches dazu beitragen kann, die molekularbiologischen Zusammenhänge der dentalen Aspekte der Hypophosphatasie zu ergründen und daraus gegebenenfalls neue Therapieansätze abzuleiten. / Hypophosphatasia (HPP) is a rare inherited disorder caused by loss-of-function mutations in the ALPL gene encoding the Tissue Nonspecific Alkaline Phosphatase (TNAP). Besides skeletal symptoms, some patients also present dental abnormalities like for example the premature loss of deciduous teeth. Here we generated and characterized five different TNAP-deficient periodontal ligament (PDL) derived cell lines using the method of CRISPR-Cas9. The mutations varied from a moderate heterozygous point mutation to a severe homozygous deletion leading to a premature stop codon. Analysis of the ALPL expression and TNAP activity measurements in CSPD Assays and TNAP stainings revealed a decrease for all TNAP-deficient cell lines with a strong correlation between the residual activity and the extend of the mutation. The already limited differentiation capacity of immortalized hTERT (human telomerase reverse transcriptase) PDL cells is completely abolished in the homozygously mutated cell line. Putative key mechanisms for the premature exfoliation in HPP are the restricted formation and mineralization of the cementum and the impaired insertion of elastic dental fibers. The newly generated TNAP-deficient cell lines provide a promising and donor independent in vitro model to gain better understanding of the molecular mechanisms of dental problems in HPP.
17

Parathormon als potentielle Therapiestrategie der Odonto-Hypophosphatasie - Untersuchungen in einem dentogenen \(in-vitro\)-Modell / Parathyroid hormone as a potential therapeutic strategy for odonto-hypophosphatasia - investigations in a dentogenic \(in\) \(vitro\) model

Schiffmaier, Jana January 2024 (has links) (PDF)
Hypophosphatasie (HPP) beschreibt eine seltene Erbkrankheit, die hauptsächlich durch heterozygote Mutationen im ALPL-Gen verursacht wird. Diese führen zu einer verminderten Aktivität der gewebeunspezifischen alkalischen Phosphatase (TNAP). Neben skelettalen Symptomen sind Zahnanomalien wie der vorzeitige Verlust von Milchzähnen ohne resorbierte Wurzel sowie eine gestörte Mineralisierung der Zahnhart-substanzen ein typisches Merkmal der HPP. Die zugrunde liegenden molekularen Mechanismen sind bisher noch nicht vollständig verstanden. In der vorliegenden Arbeit wurden Zelllinien des parodontalen Ligaments mit Mutationen im ALPL-Gen charakterisiert, um anschließend mögliche Therapiestrategien für die HPP auf molekularer Ebene zu untersuchen. Im Rahmen der basalen Charakterisierung wurden die Zelllinien hinsichtlich der TNAP-Expression (Immunhistochemie, Western Blot), des Stoffwechselprofils (ATP-Assay) und des osteogenen Differenzierungspotenzials (Alizarin-Färbung) analysiert. Von Interesse war auch, ob durch CRISPR/Cas9-basiertes Genediting Off-Target Mutationen entstanden sind. Zur Untersuchung der molekularen Auswirkungen von PTH, welches die ALPL-Expression steigern kann, wurden zwei Protokolle etabliert, die eine kontinuier-liche, kurzzeitige bzw. intermittierende Präsenz von PTH in-vitro imitieren. Anschließend wurde die ALPL-Expression (qPCR) sowie TNAP-Aktivität (CSPD-Assay) ermittelt. Die basale TNAP-Expression war variabel und reichte vom völligen Fehlen in den Zell-linien mit Deletionen bis hin zu einer starken TNAP-Expression in der Zelllinie mit einer heterogenen Punktmutation. Eine niedrige Expression ging mit einer verringerten Zell-proliferation sowie extrazellulären ATP einher. Es zeigte sich ein unterschiedliches Mineralisierungspotenzial, das hauptsächlich das TNAP-Expressionsniveau in den verschiedenen Zelllinien widerspiegelt, während die PTH-Stimulation keine Wirkung auf die Differenzierung hatte. Im Gegensatz zu klinischen Beobachtungen deuten die Ergebnisse auf eine hohe Korrelation zwischen Genotyp und Phänotyp in-vitro hin, die in-vivo noch bestätigt werden müssen. Die Sequenzierung bestätigte, dass durch die Geneditierung keine Off-Target Mutationen aufgetreten sind, welche somit keinen limitierenden Faktor hinsichtlich der Differenzierungskapazität darstellen können. Die Stimulation mit PTH führte zwar nicht zu einer gesteigerten ALPL-Expression, doch konnte die TNAP-Aktivität in den ALPL-defizienten Zelllinien punktuell gesteigert werden und bildet somit eine solide Basis für weitere Experimente, die zur Therapieentwicklung für die Odonto-HPP beitragen können. / Hypophosphatasia (HPP) describes a rare inherited disorder caused mainly by heterozygous mutations in the ALPL gene. These lead to impaired activity of tissue non-specific alkaline phosphatase (TNAP). In addition to skeletal symptoms, dental abnormalities such as premature loss of deciduous teeth without resorption of the roots and impaired mineralization of tooth hard tissues are typical features of HPP. The underlying molecular mechanisms are not yet fully understood. In the present study, cell lines of the periodontal ligament with mutations in the ALPL gene were characterized to subsequently investigate potential therapeutic strategies for HPP at the molecular level. As part of the basal characterization, the cell lines were analyzed with respect to TNAP expression (immunohistochemistry, Western blot), metabolic profile (ATP assay) and osteogenic differentiation potential (alizarin staining). Also of interest was whether off-target mutations resulted from CRISPR/Cas9-based gene editing. To investigate the molecular effects of Parathyroid Hormone (PTH), which can increase ALPL expression, two protocols were established that mimic continuous, short-term, and intermittent presence of PTH in-vitro. ALPL gene expression (qPCR), as well as TNAP activity (CSPD assay) were then determined. Basal TNAP expression was variable, ranging from complete absence in the cell lines with deletions to strong TNAP expression in the cell line with a heterogeneous point mutation. Low expression was associated with decreased cell proliferation as well as extracellular ATP. There was a differential mineralization potential mainly reflecting the TNAP expression level in the different cell lines, whereas PTH stimulation had no effect on differentiation. In contrast to clinical observations, the results indicate a high correlation between genotype and phenotype in-vitro, which remains to be confirmed in-vivo. Sequencing confirmed that no off-target mutations occurred as a result of gene editing, which thus cannot be a limiting factor with respect to differentiation capacity. Although stimulation with PTH did not result in increased ALPL expression, TNAP activity was selectively increased in the ALPL-deficient cell lines, providing a solid basis for further experiments that may contribute to therapy development for Odonto-HPP.
18

Optimisation de l'édition du génome médiée par les systèmes CRISPR-Cas9

Agudelo, Daniel 12 March 2022 (has links)
Le large éventail d'applications du système CRISPR-Cas a conduit à des innovations biotechnologiques qui sont sur le point de transformer l'industrie pharmaceutique actuelle. Néanmoins, l'atteinte d'un haut niveau d'efficacité à un gène cible reste encore aujourd'hui un défi pour l'édition du génome. Ceci est dû principalement à la capacité encore limitée de modifier tous les sites du génome humain, tout comme le faible taux de recombinaison homologue obtenu chez les cellules de mammifères. Ainsi, l'optimisation des processus de modification génique s'avère indispensable pour favoriser les diverses utilisations de l'édition du génome. Dans cette thèse, il a été question de (i) développer une méthode d'enrichissement de cellules génétiquement modifiées et (ii) augmenter la polyvalence de l'édition du génome en augmentant la plage de ciblage du système CRISPR-Cas9 dans le génome humain. L'objectif de la première partie de cette thèse visait à étudier la fonctionnalité du gène ATP1A1, codant pour la pompe sodium/potassium (Na⁺/K⁺ ATPase), comme marqueur endogène de l'édition du génome. Dans ce sens, nous avons modifié la sensibilité de cette pompe pour l'ouabaïne en insérant des mutations dominantes dans le locus ATP1A1, ce qui a permis de générer des cellules résistantes à l'ouabaïne. La capacité de multiplexage du système CRISPR-Cas permet de co-cibler simultanément ATP1A1 et le locus d'intérêt, où il est possible d'enrichir des évènements de réparation par NHEJ ou par RH dans les deux locus à la suite de l'ajout d'ouabaïne. Ainsi, nous avons démontré que cette approche peut être appliquée non seulement aux lignées cellulaires, mais aussi aux cellules primaires ce qui permet d'envisager une possible utilisation pour le développement thérapeutique ex vivo. Dans le deuxième objectif de cette thèse, il était question d'optimiser le système CRISPR1-Cas9 de Streptococcus thermophilus dans le but d'élargir le répertoire de nucléases pour l'édition du génome. Dans ce sens, nous avons optimisé l'expression de l'ARN guide et nous avons caractérisé diverses variantes de St1Cas9 permettant de cibler des régions riches en A/T. Autant sous forme de nucléase que d'éditeur de base, l'application de nos variantes de St1Cas9 in vitro a permis d'obtenir des hauts taux d'édition du génome humain. Ainsi, la taille de St1Cas9 est idéale pour sa vectorisation avec son ARN guide dans un seul vecteur adéno-associés (AAV). Dans ce sens, nous avons démontré que l'administration du vecteur AAV-St1Cas9 permet de sauver la létalité et les anomalies métaboliques dans un modèle murin de tyrosinémie héréditaire de type I. En tout, ces travaux illustrent des outils permettant d'augmenter le rendement d'édition et l'ouverture de nouvelles régions géniques pouvant être ciblées à l'intérieur du génome humain à l'aide du système CRISPR-Cas9. Ainsi, nous avons démontré la fonctionnalité des outils développés au cours de ce projet de thèse pour diverses applications ex vivo et in vivo, permettant ainsi d'élargir le potentiel thérapeutique de l'édition du génome.
19

Exploring methods to understand bovine embryo competency in vitro

Nix, Jada Lindsay 19 December 2023 (has links)
The development of a preimplantation embryo is a stepwise process consisting of morphological, biochemical, and genomic changes. Much remains unknown about the attainment of embryo competency to develop and establish pregnancy. To investigate this, we compared methods of selection at the oocyte or embryo level for improved blastocyst production. Brilliant cresyl blue staining was used to sort oocytes by their growth status (not fully grown vs. fully grown) and the timing of the first embryonic cell division to sort embryos. We found that an embryo's cleavage kinetics are more indicative of their competency than the growth status of the oocyte that gave rise to that embryo. We further investigated the cryopreservation survival of embryos with fast or slow cleavage kinetics and found no significant differences in their ability to hatch post-thawing. Next, we used the complete sequence of the cattle Y chromosome to identify oligonucleotides for efficient sexing of samples. These materials may be used to understand sexual dimorphism as a biological factor in future experiments. Finally, we designed a new method to induce targeted DNA sequence deletions and mRNA cleavage in zygotes using CRISPR-Cas. We targeted the gene OCT4, since the literature shows variable knockout outcomes. Our method improved deletion efficiency while accounting for preexisting or maternally inherited mRNA of the target gene. Our findings can be used to better understand early embryo development and biological drivers of quality, which can be leveraged to improve embryo production and transfer outcomes. / Master of Science / The development of an early embryo involves many biological and structural changes. Much remains unknown about the influences on embryo quality and ability to successfully develop. To investigate this, we compared methods for selecting the highest quality cattle eggs or embryos. We found that the observation of an embryo's development speed is better for selecting high quality embryos than egg quality. We further investigated the freezing survival of embryos with fast or slow growth. We found that the freezing survival of fast and slow growing embryos is not different. Next, we used the complete sequence of the cattle Y chromosome to identify PCR primers for determining sample sex. These resources can help us understand how an individual's sex can influence biological differences. Finally, we designed a new method for removing the total function of a gene in embryos. For this, we deleted segments of DNA and cut RNAs. Our findings can be used to better understand early embryo development and biological drivers of quality, which can be leveraged to improve embryo production and transfer outcomes.
20

Human induced pluripotent stem cells (iPSCs) in inherited cardiomyopathies: Generation and characterization of an iPSC-derived cardiomyocyte model system of dilated cardiomyopathy with ataxia (DCMA) / Humane induzierte pluripotente Stammzellen in vererbbaren Kardiomyopathien: Generierung und Charakterisierung eines auf Stammzellen basierenden Herzmuskelmodellsystems der Dilatativen Kardiomyopathie mit Ataxie (DCMA)

Janz, Anna January 2024 (has links) (PDF)
The emergence of human induced pluripotent stem cells (iPSCs) and the rise of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing technology innovated the research platform for scientists based on living human pluripotent cells. The revolutionary combination of both Nobel Prize-honored techniques enables direct disease modeling especially for research focused on genetic diseases. To allow the study on mutation-associated pathomechanisms, we established robust human in vitro systems of three inherited cardiomyopathies: arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy with juvenile cataract (DCMJC) and dilated cardiomyopathy with ataxia (DCMA). Sendai virus vectors encoding OCT3/4, SOX2, KLF4, and c-MYC were used to reprogram human healthy control or mutation-bearing dermal fibroblasts from patients to an embryonic state thereby allowing the robust and efficient generation of in total five transgene-free iPSC lines. The nucleofection-mediated CRISPR/Cas9 plasmid delivery in healthy control iPSCs enabled precise and efficient genome editing by mutating the respective disease genes to create isogenic mutant control iPSCs. Here, a PKP2 knock-out and a DSG2 knock-out iPSC line were established to serve as a model of ACM. Moreover, a DNAJC19 C-terminal truncated variant (DNAJC19tv) was established to mimic a splice acceptor site mutation in DNAJC19 of two patients with the potential of recapitulating DCMA-associated phenotypes. In total eight self-generated iPSC lines were assessed matching internationally defined quality control criteria. The cells retained their ability to differentiate into cells of all three germ layers in vitro and maintained a stable karyotype. All iPSC lines exhibited a typical stem cell-like morphology as well as expression of characteristic pluripotency markers with high population purities, thus validating the further usage of all iPSC lines in in vitro systems of ACM, DCMA and DCMJC. Furthermore, cardiac-specific disease mechanisms underlying DCMA were investigated using in vitro generated iPSC-derived cardiomyocytes (iPSC-CMs). DCMA is an autosomal recessive disorder characterized by life threatening early onset cardiomyopathy associated with a metabolic syndrome. Causal mutations were identified in the DNAJC19 gene encoding an inner mitochondrial membrane (IMM) protein with a presumed function in mitochondrial biogenesis and cardiolipin (CL) remodeling. In total, two DCMA patient-derived iPSC lines (DCMAP1, DCMAP2) of siblings with discordant cardiac phenotypes, a third isogenic mutant control iPSC line (DNAJC19tv) as well as two control lines (NC6M and NC47F) were directed towards the cardiovascular lineage upon response to extracellular specification cues. The monolayer cardiac differentiation approach was successfully adapted for all five iPSC lines and optimized towards ventricular subtype identity, higher population purities and enhanced maturity states to fulfill all DCMA-specific requirements prior to phenotypic investigations. To provide a solid basis for the study of DCMA, the combination of lactate-based metabolic enrichment, magnetic-activated cell sorting, mattress-based cultivation and prolonged cultivation time was performed in an approach-dependent manner. The application of the designated strategies was sufficient to ensure adult-like characteristics, which included at least 60-day-old iPSC-CMs. Therefore, the novel human DCMA platform was established to enable the study of the pathogenesis underlying DCMA with respect to structural, morphological and functional changes. The disease-associated protein, DNAJC19, is constituent of the TIM23 import machinery and can directly interact with PHB2, a component of the membrane bound hetero-oligomeric prohibitin ring complexes that are crucial for phospholipid and protein clustering in the IMM. DNAJC19 mutations were predicted to cause a loss of the DnaJ interaction domain, which was confirmed by loss of full-length DNAJC19 protein in all mutant cell lines. The subcellular investigation of DNAJC19 demonstrated a nuclear restriction in mutant iPSC-CMs. The loss of DNAJC19 co-localization with mitochondrial structures was accompanied by enhanced fragmentation, an overall reduction of mitochondrial mass and smaller cardiomyocytes. Ultrastructural analysis yielded decreased mitochondria sizes and abnormal cristae providing a link to defects in mitochondrial biogenesis and CL remodeling. Preliminary data on CL profiles revealed longer acyl chains and a more unsaturated acyl chain composition highlighting abnormities in the phospholipid maturation in DCMA. However, the assessment of mitochondrial function in iPSCs and dermal fibroblasts revealed an overall higher oxygen consumption that was even more enhanced in iPSC-CMs when comparing all three mutants to healthy controls. Excess oxygen consumption rates indicated a higher electron transport chain (ETC) activity to meet cellular ATP demands that probably result from proton leakage or the decoupling of the ETC complexes provoked by abnormal CL embedding in the IMM. Moreover, in particular iPSC-CMs presented increased extracellular acidification rates that indicated a shift towards the utilization of other substrates than fatty acids, such as glucose, pyruvate or glutamine. The examination of metabolic features via double radioactive tracer uptakes (18F-FDG, 125I-BMIPP) displayed significantly decreased fatty acid uptake in all mutants that was accompanied by increased glucose uptake in one patient cell line only, underlining a highly dynamic preference of substrates between mutant iPSC-CMs. To connect molecular changes directly to physiological processes, insights on calcium kinetics, contractility and arrhythmic potential were assessed and unraveled significantly increased beating frequencies, elevated diastolic calcium concentrations and a shared trend towards reduced cell shortenings in all mutant cell lines basally and upon isoproterenol stimulation. Extended speed of recovery was seen in all mutant iPSC-CMs but most striking in one patient-derived iPSC-CM model, that additionally showed significantly prolonged relaxation times. The investigations of calcium transient shapes pointed towards enhanced arrhythmic features in mutant cells comprised by both the occurrence of DADs/EADs and fibrillation-like events with discordant preferences. Taken together, new insights into a novel in vitro model system of DCMA were gained to study a genetically determined cardiomyopathy in a patient-specific manner upon incorporation of an isogenic mutant control. Based on our results, we suggest that loss of full-length DNAJC19 impedes PHB2-complex stabilization within the IMM, thus hindering PHB-rings from building IMM-specific phospholipid clusters. These clusters are essential to enable normal CL remodeling during cristae morphogenesis. Disturbed cristae and mitochondrial fragmentation were observed and refer to an essential role of DNAJC19 in mitochondrial morphogenesis and biogenesis. Alterations in mitochondrial morphology are generally linked to reduced ATP yields and aberrant reactive oxygen species production thereby having fundamental downstream effects on the cardiomyocytes` functionality. DCMA-associated cellular dysfunctions were in particular manifested in excess oxygen consumption, altered substrate utilization and abnormal calcium kinetics. The summarized data highlight the usage of human iPSC-derived CMs as a powerful tool to recapitulate DCMA-associated phenotypes that offers an unique potential to identify therapeutic strategies in order to reverse the pathological process and to pave the way towards clinical applications for a personalized therapy of DCMA in the future. / Die Entwicklung von induzierten pluripotenten Stammzellen (iPS-Zellen) und die biotechnologische Anwendung des „clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9“ (CRISPR/Cas9) Gen-Editierungssystems bilden eine innovative Forschungsplattform für Wissenschaftler basierend auf lebenden menschlichen pluripotenten Stammzellen. Die bahnbrechende Kombination beider nobelpreisprämierter Techniken erlaubt eine direkte Krankheitsmodellierung insbesondere für die Erforschung von genetisch bedingten Erkrankungen. Um die Untersuchung von mutationsassoziierten Pathomechanismen zu ermöglichen, etablierten wir robuste humane in vitro Systeme von drei vererbbaren Kardiomyopathien: die arrhythmogene Kardiomyopathie (AKM), die dilatative Kardiomyopathie mit juveniler Katarakt (DKMJK) und die dilatative Kardiomyopathie mit Ataxie (DKMA). Zur Generierung von transgenfreien iPS-Zellen wurden für OCT3/4, SOX2, KLF4 und c-MYC kodierende Sendai-Virus-Vektoren verwendet um humane gesunde Kontroll- oder mutationstragende dermale Fibroblasten von Patienten in einen embryonalen Zustand zu reprogrammieren. Die Verwendung der SeV-vermittelten Reprogrammierung ermöglichte uns eine effiziente und robuste Herstellung von insgesamt fünf transgen-freien iPS-Zelllinien. Zudem befähigt die Nukleofektion der CRISPR/Cas9-Plasmide in gesunden Kontroll-iPS-Zellen eine präzise und effiziente Genom-Editierung krankheitsrelevanter Gene und damit die Generierung von isogenen mutierten iPS-Zelllinien. Mit diesem Verfahren wurden eine PKP2-Knock-out- und eine DSG2-Knock-out iPSZ-Linie hergestellt, die jeweils als Modell für AKM dienen. Darüber hinaus wurde eine mit DKMA-assoziierte Spleißakzeptormutation auf genetischer Basis imitiert, um die mit dem Phänotyp zweier Patienten in Verbindung gebrachte C-terminal verkürzte DNAJC19-Variante (DNAJC19tv) auf translationaler Ebene rekapitulieren zu können. Alle acht eigens generierten iPS-Zelllinien entsprachen international definierten Qualitätskontrollkriterien. Die hergestellten iPS-Zellen behielten die Fähigkeit in vitro in Zellen der drei Keimblätter zu differenzieren und zeigten darüber hinaus einen normalen Karyotyp. Alle iPS-Zelllinien wiesen eine typische stammzellähnliche Morphologie sowie die Expression charakteristischer Pluripotenzmarker bei gleichzeitig hoher Populationsreinheit auf. Die experimentelle Qualtitätskontrolle hat somit die weitere Verwendung aller iPS-Zelllinien in in vitro Systemen von AKM, DKMA und DKMJK validiert. Die der DKMA zugrundeliegenden herzspezifischen Krankheitsmechanismen wurden zudem mithilfe von in vitro produzierten iPSZ-abgeleiteten Kardiomyozyten (iPSZ-KMs) untersucht. DKMA ist eine autosomal rezessiv vererbte Erkrankung, die durch Mutationen im DNAJC19 Gen hervorgerufen wird. Das wichtigste klinische Merkmal der Patienten ist eine früh einsetzende und lebensbedrohliche dilatative Kardiomyopathie, die oftmals mit einem metabolischen Syndrom einhergeht. DNAJC19 kodiert für ein Protein der inneren mitochondrialen Membran (IMM), dessen postulierte Funktion in der mitochondrialen Biogenese und der Remodellierung von Cardiolipin liegt. Zur Modellierung der DKMA wurden zwei von DKMA-Patienten abgeleitete iPS-Zelllinien (DCMAP1, DCMAP2) eines Geschwisterpaares mit unterschiedlich ausgeprägten kardialen Phänotypen, eine dritte isogene mutierte iPS-Zelllinie (DNAJC19tv) sowie zwei gesunden Kontroll-iPS-Zelllinien (NC6M und NC47F) mithilfe extrazellulärer Spezifikationsfaktoren zur kardiovaskulären Differenzierung angeregt. Das Monolayer-Protokoll zur kardialen Differenzierung wurde erfolgreich für alle fünf iPSZ-Linien adaptiert und in Bezug auf die Anreicherung des ventrikulären Herzmuskelzellsubtyps, höhere Zellpopulationsreinheiten und adulte Reifegrade optimiert. Die Kombination der Laktat-basierten metabolischen Aufreinigung, der magnetisch-aktivierten Zellsortierung, der Anwendung einer Mattress-basierten Kultivierungsstrategie und verlängerte Kultivierungszeiten ermöglichte die Erfüllung aller DKMA-spezifischen Anforderungen. Zusammengefasst konnten insbesondere adulte Charakteristika durch die Kombination der benannten experimentellen Strategien unter Verwendung von mindestens 60 Tage kultivierten iPSZ-KMs nachgewiesen werden, um eine zuverlässige phänotypische Untersuchung der DKMA gewährleisten zu können. Die innovative humane Untersuchungsplattform wurde etabliert, um die Pathogenese der DKMA im Hinblick auf strukturelle, morphologische und funktionelle Veränderungen entschlüsseln zu können. Das mit DKMA assoziierte Protein DNAJC19 ist Bestandteil der TIM23-Importmaschinerie und besitzt zudem die Fähigkeit einer direkten Interaktion mit PHB2. PHB2 trägt zur Bildung der membrangebundenen hetero-oligomeren Prohibitin-Ringkomplexe bei, deren Hauptfunktion in der Anreicherung von Phospholipiden und Proteinen innerhalb von Clustern in der IMM liegt. Der durch DNAJC19 Mutationen vermutete hervorgerufenen Verlust der DnaJ-Interaktionsdomäne wurde durch die fehlende Expression des DNAJC19 Proteins in voller Länge in allen mutationstragenden Zellen bestätigt. Die subzelluläre Untersuchung von DNAJC19 zeigte ein auf den Kern beschränktes Expressionsmuster in mutierten iPSZ-KMs. Der Verlust der DNAJC19 Ko-Lokalisation mit mitochondrialen Strukturen ging mit einer abnormen mitochondrialen Fragmentierung, einer signifikanten Abnahme der mitochondrialen Masse und einer signifikant reduzierten Kardiomyozytengröße einher. Ultrastrukturelle Analysen ergaben zudem kleinere Mitochondrien und abnorme Cristae, die eine krankheitsrelevante Verbindung zu Defekten in der mitochondrialen Biogenese und der CL-Reifung darlegen. Vorläufige Daten zu CL-Profilen zeigten längere Acylketten und eine ungesättigtere Acylkettenzusammensetzung, was auf Anomalien in der Phospholipidmaturierung bei DKMA hinweist. Der Vergleich aller Mutanten mit gesunden Kontrollen hinsichtlich der mitochondrialen Funktion in iPS-Zellen und Hautzellen (dermale Fibroblasten), zeigte eine insgesamt höhere Sauerstoffverbrauchsrate, die in iPSZ-KMs noch stärker ausgeprägt war. Der erhöhte Sauerstoffverbrauch deutet auf eine höhere Aktivität der Elektronentransportkette hin um den zellulären Energiebedarf decken zu können. Wir vermuten einen erhöhten Sauerstoffverbrauch als Konsequenz des Protonendurchsickerns oder der Entkopplung der ETC-Komplexe, das durch eine abnorme CL-Einbettung in der IMM bedingt sein könnte. Darüber hinaus wiesen insbesondere iPSZ-KMs erhöhte extrazelluläre Säuerungsraten auf, die auf eine Verstoffwechselung anderer Substrate wie Glukose, Pyruvat oder Glutamin hinweisen, im Gegensatz zu der ansonsten bevorzugten Verstoffwechslung von Fettsäuren. Die Untersuchung der metabolischen Eigenschaften mittels der radioaktiven Tracer 18F-FDG und 125I-BMIPP zeigte eine signifikant verringerte Fettsäureaufnahme in allen Mutanten, die nur in einer Patientenzelllinie von einer erhöhten Glukoseaufnahme begleitet wurde. Diese Ergebnisse weisen auf eine DKMA-spezifische hochdynamische Präferenz der Substrate zwischen den unterschiedlichen Mutanten hin. Um den Einfluss der molekularen Veränderungen direkt mit physiologischen Prozessen in Verbindung bringen zu können, wurden Untersuchungen der Kalziumkinetik, der Kontraktilität und des arrhythmischen Potentials durchgeführt. Einzelzellmessungen ergaben eine signifikant erhöhte Kontraktionsfrequenz, erhöhte diastolische Kalziumkonzentrationen und eine Tendenz zu reduzierten Zellverkürzungen in allen mutierten Zelllinien basal und verstärkt nach Isoproterenol-Stimulation. Zudem wurden verlangsamte Erholungsgeschwindigkeiten in allen mutierten iPSZ-KMs festgestellt, das in den iPSZ-KMs des einen Patienten besonders auffällig war und mit verlängerten Relaxationszeiten einherging. Die Evaluation der Kalziumtransientenformen deutet auf verstärkte arrhythmische Merkmale in den mutierten Zellen hin, die sowohl das Auftreten von DADs/EADs als auch Fibrillations-ähnlichen Ereignissen mit gegensätzlichen Präferenzen umfasste. Insgesamt wurden unter der Verwendung patientenspezifischer iPS-Zellen und einer isogenen Mutantenkontrolle neue Einblicke in ein innovatives in vitro Modellsystem der DKMA gewonnen. Basierend auf unseren Ergebnissen vermuten wir, dass der Verlust des DNAJC19 Proteins in voller Länge die Stabilisierung von PHB-Komplexen innerhalb der IMM beeinträchtigt und damit PHB-Ringe an der Bildung von IMM-spezifischen Phospholipid-Clustern hindert. Diese Cluster sind essentiell um eine normale Cardiolipin-Reifung und dessen Funktion in der Cristae-Morphogenese gewährleisten zu können. Abnorme Cristae und fragmentierte mitochondriale Strukturen wurden beobachtet und deuten so auf eine essentielle Rolle von DNAJC19 in der mitochondrialen Morphogenese und Biogenese hin. Abnorme Veränderungen in der mitochondrialen Morphologie werden in der Regel mit einer verminderten ATP-Verfügbarkeit und einer erhöhten Produktion an freien Sauerstoffradikalen assoziiert, das nachfolgend die gesamte Funktionalität der Kardiomyozyten negativ beeinflussen kann. Diese Veränderungen konnten anhand einer erhöhten Sauerstoffverbrauchsrate, unterschiedliche metabolische Eigenschaften und einer abnormalen Kalziumkinetik gemessen werden. Die zusammengefassten Daten unterstreichen die Verwendbarkeit von humanen iPSZ-KMs als ein eindrucksvolles System zur Rekapitulation von herzspezifischen Phänotypen und haben damit neue Einblicke in die Pathogenese der DKMA ermöglicht. Das Modellsystem bietet ein einzigartiges Potenzial zur Identifizierung therapeutischer Strategien, um pathologische Prozesse umkehren zu können und so den Weg für zukünftige klinische Anwendungen im Rahmen der personalisierten Therapie zu ebnen.

Page generated in 0.4016 seconds