• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 8
  • 7
  • 7
  • 2
  • 1
  • Tagged with
  • 72
  • 72
  • 21
  • 20
  • 16
  • 15
  • 15
  • 14
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Phylogenetic relationship of prophages is affected by CRISPR selection in Group A Streptococcus / A群連鎖球菌上のプロファージの系統関係はCRISPRの選択による影響を受ける

Yamada, Shunsuke 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21687号 / 医博第4493号 / 新制||医||1036(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 竹内 理, 教授 清水 章, 教授 遊佐 宏介 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
42

Optimal gRNA design of different CRISPR-Cas systems for DNA and RNA editing

Zhu, Houxiang 29 April 2019 (has links)
No description available.
43

Bio-Inspired Hardware Security Defenses: A CRISPR-Cas-Based Approach for Detecting Trojans in FPGA Systems

Staub, Dillon 24 October 2019 (has links)
No description available.
44

Utilisation des vésicules extracellulaires de sérum comme véhicule de livraison du système CRISPR-Cas9 pour traiter la Dystrophie Musculaire de Duchenne

Fortin-Archambault, Annabelle 18 October 2022 (has links)
La dystrophie musculaire de Duchenne est une maladie génétique qui résulte de diverses mutations dans le gène DMD, codant pour la protéine dystrophine. 70% des patients ont une délétion d'exons ou de parties d'exons provoquant un changement dans le cadre de lecture, résultant en l'apparition d'un codon stop et en l'absence de la protéine dystrophine. Plusieurs traitements potentiels ont été explorés dans les dernières années pour cette maladie, dont le système CRISPR-Cas9, un outil génétique permettant d'éliminer un segment d'ADN à l'aide de la protéine nucléase Cas9 et de deux guides d'ARN ciblant des séquences précises d'ADN. Le plus grand défi avec l'utilisation de cette technologie est sa livraison in vivo. Les vésicules extracellulaires sont des particules membranaires lipidiques qui jouent un rôle dans la communication intercellulaire et sont retrouvées dans tous les biofluides chez les mammifères. Elles pourraient donc être une alternative intéressante pour la livraison du système CRISPR-Cas9. J'ai participé à des travaux de purification de vésicules extracellulaires de sérum par chromatographie par exclusion de taille. Ces vésicules extracellulaires ont été chargées avec la protéine Cas9 et des guides ARN, puis, des injections intramusculaires ont été effectuées dans le Tibialis anterior de trois lignées de souris (Ai9, RAG-mdx et mdx/hDMD) pour établir l'efficacité du traitement. Les résultats ont montré que les vésicules extracellulaires chargées avec la Cas9 et des guides d'ARN provoquent une édition de l'ADN efficace dans le Tibialis anterior des trois lignées de souris utilisées et la restauration de l'expression de la protéine dystrophine dans les fibres musculaires du Tibialis anterior des souris RAG-mdx, modèle pour la dystrophie musculaire de Duchenne. Le traitement a ensuite été modifié pour permettre le ciblage des vésicules extracellulaires aux organes affectés par la dystrophie musculaire de Duchenne, soit le cœur et les muscles squelettiques. Des peptides de ciblage ont été sélectionnés dans la littérature et insérés dans la membrane des vésicules extracellulaires marquées de façon fluorescente à l'aide d'un segment lipidique stéaryl. Les résultats de l'expérience effectuée avec les vésicules extracellulaires ciblées n'ont pas été concluants en raison d'un marquage mal adapté des vésicules injectées, mais de futures expériences permettront d'élucider leur efficacité. L'ajustement du traitement pour permettre une injection systémique rejoignant le cœur et les muscles squelettiques est indispensable à l'application de celui-ci à la clinique. / Duchenne muscular dystrophy is a genetic disease that affects one in 3500 boys and results from mutations in the DMD gene, which codes for dystrophin protein. 70% of patients have an exon deletion, which results in a shift in the reading frame, the apparition of a stop codon, and the absence of the dystrophin protein. Many different potential treatments have been explored for Duchenne muscular dystrophy, including the CRISPRCas9 system. This technology allows for the modification of genomic DNA through a Cas9 nuclease and two guide RNAs designed to target a specific DNA sequence. The biggest challenge with using the CRISPR system is delivery. The classic vectors for CRISPR, such as AAV, can cause many adverse effects like immunological responses. Extracellular vesicles are membranous particles that play a role in intercellular communication and are found in all mammalian biofluids. They are thus an interesting alternative for the delivery of the Cas9 protein and its guide RNAs. I have participated in a research project aiming to purify serum extracellular vesicles by size-exclusion chromatography and to load them with Cas9 and two guide RNAs. These extracellular vesicles were then injected intramuscularly into the Tibialis anterior muscles of three mouse strains (Ai9, RAG-mdx and mdx/hDMD) to assess treatment efficiency. The injection of Cas9 and guide RNA-loaded extracellular vesicles produced efficient gene editing as well as dystrophin expression restauration. To modify the treatment for systemic injection, targeting peptides were added to EV membrane through a lipid stearyl segment. This was done to target the extracellular vesicles to Duchenne muscular dystrophy-affected organs: heart and skeletal muscles. Results of the targeted-extracellular vesicle experiment were inconclusive, however, with more experiments, the efficacy of the targeting peptides should be determinable. It is essential to adjust this treatment to allow for targeted systemic delivery for it to be applicable to the clinic.
45

Dual CRISPR-Cas3 system for inducing multi-exon skipping in DMD patient-derived iPSCs / DMD患者由来iPS細胞におけるマルチエクソンスキッピング誘導に向けたDual CRISPR-Cas3システム

Kita, Yuto 23 January 2024 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「メディカルイノベーション大学院プログラム」 / 京都大学 / 新制・課程博士 / 博士(医科学) / 甲第25007号 / 医科博第154号 / 新制||医科||10(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 遊佐 宏介, 教授 萩原 正敏, 教授 齋藤 潤 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
46

<b>Structural and functional studies of type v crispr</b><b>-</b><b>cas effectors</b>

Renjian Xiao (8992832) 25 July 2024 (has links)
<p dir="ltr">The CRISPR-Cas systems, originally evolved as bacterial and archaeal adaptive immune systems against viral infections, have been ingeniously repurposed for genome editing. The ongoing evolutionary competition between bacteria and phages has given rise to the diversification of CRISPR-Cas systems, which can be broadly classified into two classes and six types. Among these, the versatile CRISPR type V family stands out as a promising source for discovering new CRISPR-Cas effectors to expand the genome editing toolbox. However, before proceeding to genome editing applications, it is imperative to get a comprehensive understanding of the mechanisms underlying how Cas effectors function as programmable RNA-guided nucleases. Structural studies play a pivotal role in elucidating these mechanisms, providing a clear picture of processes such as DNA recognition and cleavage.</p><p><br></p><p dir="ltr">In the first part of this thesis, we embarked on determining the cryo-EM structures of an extraordinarily small type V-F CRISPR-Cas effector, Cas12f. Our findings unveiled that Cas12f functions as an asymmetric dimer. Through structural analysis and mutagenesis experiments, we elucidated the mechanisms of PAM recognition and substrate cleavage by Cas12f. Furthermore, we provided insights into the activation mechanism of Cas12f by monitoring its conformational changes before and after the crRNA-target DNA heteroduplex formation. Our results contribute to our understanding of the type V Cas effector nucleases and hold promise for possible applications of genome editing.</p><p><br></p><p dir="ltr">In the second part, we focused on study of CRISPR-associated transposons (CASTs). Specifically, we delved into Cas12k, a component of the type V-K CRISPR-Cas system, which is a naturally inactivated nuclease but is interestingly associated with transposons and is capable for guiding transposition. We determined the structure of Cas12k in complex with the guide RNA and target DNA. Our studies revealed target site recognition mechanism and the structural features of Cas12k critical for downstream CIRPSR-guided DNA transposition.</p><p><br></p><p dir="ltr">Lastly, we directed our attention towards the ancestor of CRISPR type V systems, TnpB, which serves as a minimal programmable RNA-guided DNA nuclease originating from the IS200/IS605-like transposon family. To reveal the molecular mechanisms of substrate recognition and cleavage, multiple approaches including artificial dimers was introduced to obtained the cryo-EM structure of <i>Isdra2</i> TnpB-gRNA-target DNA ternary complex. Furthermore, our exploration extended to the investigation of newly emerged TnpB variants. Among these variants, one was identified as a naturally occurring transcription repressor. We attained the cryo-EM structure of this variant at 3.12 Å and currently working on understanding its mechanism.</p>
47

Utilisation des vésicules extracellulaires de sérum comme véhicule de livraison du système CRISPR-Cas9 pour traiter la Dystrophie Musculaire de Duchenne

Fortin-Archambault, Annabelle 14 November 2023 (has links)
La dystrophie musculaire de Duchenne est une maladie génétique qui résulte de diverses mutations dans le gène DMD, codant pour la protéine dystrophine. 70% des patients ont une délétion d'exons ou de parties d'exons provoquant un changement dans le cadre de lecture, résultant en l'apparition d'un codon stop et en l'absence de la protéine dystrophine. Plusieurs traitements potentiels ont été explorés dans les dernières années pour cette maladie, dont le système CRISPR-Cas9, un outil génétique permettant d'éliminer un segment d'ADN à l'aide de la protéine nucléase Cas9 et de deux guides d'ARN ciblant des séquences précises d'ADN. Le plus grand défi avec l'utilisation de cette technologie est sa livraison in vivo. Les vésicules extracellulaires sont des particules membranaires lipidiques qui jouent un rôle dans la communication intercellulaire et sont retrouvées dans tous les biofluides chez les mammifères. Elles pourraient donc être une alternative intéressante pour la livraison du système CRISPR-Cas9. J'ai participé à des travaux de purification de vésicules extracellulaires de sérum par chromatographie par exclusion de taille. Ces vésicules extracellulaires ont été chargées avec la protéine Cas9 et des guides ARN, puis, des injections intramusculaires ont été effectuées dans le Tibialis anterior de trois lignées de souris (Ai9, RAG-mdx et mdx/hDMD) pour établir l'efficacité du traitement. Les résultats ont montré que les vésicules extracellulaires chargées avec la Cas9 et des guides d'ARN provoquent une édition de l'ADN efficace dans le Tibialis anterior des trois lignées de souris utilisées et la restauration de l'expression de la protéine dystrophine dans les fibres musculaires du Tibialis anterior des souris RAG-mdx, modèle pour la dystrophie musculaire de Duchenne. Le traitement a ensuite été modifié pour permettre le ciblage des vésicules extracellulaires aux organes affectés par la dystrophie musculaire de Duchenne, soit le cœur et les muscles squelettiques. Des peptides de ciblage ont été sélectionnés dans la littérature et insérés dans la membrane des vésicules extracellulaires marquées de façon fluorescente à l'aide d'un segment lipidique stéaryl. Les résultats de l'expérience effectuée avec les vésicules extracellulaires ciblées n'ont pas été concluants en raison d'un marquage mal adapté des vésicules injectées, mais de futures expériences permettront d'élucider leur efficacité. L'ajustement du traitement pour permettre une injection systémique rejoignant le cœur et les muscles squelettiques est indispensable à l'application de celui-ci à la clinique. / Duchenne muscular dystrophy is a genetic disease that affects one in 3500 boys and results from mutations in the DMD gene, which codes for dystrophin protein. 70% of patients have an exon deletion, which results in a shift in the reading frame, the apparition of a stop codon, and the absence of the dystrophin protein. Many different potential treatments have been explored for Duchenne muscular dystrophy, including the CRISPRCas9 system. This technology allows for the modification of genomic DNA through a Cas9 nuclease and two guide RNAs designed to target a specific DNA sequence. The biggest challenge with using the CRISPR system is delivery. The classic vectors for CRISPR, such as AAV, can cause many adverse effects like immunological responses. Extracellular vesicles are membranous particles that play a role in intercellular communication and are found in all mammalian biofluids. They are thus an interesting alternative for the delivery of the Cas9 protein and its guide RNAs. I have participated in a research project aiming to purify serum extracellular vesicles by size-exclusion chromatography and to load them with Cas9 and two guide RNAs. These extracellular vesicles were then injected intramuscularly into the Tibialis anterior muscles of three mouse strains (Ai9, RAG-mdx and mdx/hDMD) to assess treatment efficiency. The injection of Cas9 and guide RNA-loaded extracellular vesicles produced efficient gene editing as well as dystrophin expression restauration. To modify the treatment for systemic injection, targeting peptides were added to EV membrane through a lipid stearyl segment. This was done to target the extracellular vesicles to Duchenne muscular dystrophy-affected organs: heart and skeletal muscles. Results of the targeted-extracellular vesicle experiment were inconclusive, however, with more experiments, the efficacy of the targeting peptides should be determinable. It is essential to adjust this treatment to allow for targeted systemic delivery for it to be applicable to the clinic.
48

Stratégies d'analyse spatio-temporelle de l‟épissage alternatif chez Caenorhabditis elegans / Strategies for spatio-temporal analysis of alternative splicing in Caenorhabditiqs elegans nervous system

Millet, Jonathan 18 December 2015 (has links)
L‟épissage alternatif est un mécanisme de régulation de l‟expression des gènes ayant pris une importance croissante dans l‟étude du vivant. Si des méthodes existent pour déterminer les gènes qui y sont soumis, peu d‟outils sont disponibles pour suivre ces événements d‟épissage in vivo au cours du développement. Pourtant, la caractérisation des régulations sous-jacentes à ces évènements et la détermination des facteurs impliqués sont dépendantes de stratégies fiables pour les visualiser dans des conditions physiologiques.Nous avons développé un système adapté à l‟étude d‟événements d‟épissage basé sur un rapporteur fluorescent bicolore. Nous l‟avons appliqué à cinq gènes de l‟organisme modèle Caenorhabditis elegans et avons suivi leur épissage in vivo.Parmi les différents gènes suivis, deux d‟entre eux suivaient un modèle d‟épissage potentiellement stochastique, un autre une absence d‟épissage alternatif détectable. Les deux derniers gènes présentent un profil d‟épissage spécifique à certain types cellulaires mais ont un effet toxique sur l‟organisme lorsque nous les avons exprimés à partir de concatémères extrachromosomiques. Pour remédier à cela, nous avons choisi de mettre en place une méthode simplifiée d‟insertion en simple copie des rapporteurs utilisant le CRISPR-Cas.Nos résultats indiquent que le système rapporteur fonctionne avec succès. Cependant, il peut encore être amélioré pour se rapprocher des taux physiologiques de transcription grâce à une insertion en simple copie dans le génome de l‟organisme. Nous avons également révélé un événement sous le contrôle de régulations spatiales, temporelles et conditionnelles. De plus, nous avons créé une série de constructions capables de déterminer les éléments en cis impliqués dans la régulation du gène top-1. / Alternative splicing is a regulatory mechanism of gene expression which is increasingly studied in Life Science. Methods exist to study this mechanism but specific tools to follow each alternative splicing event in a spatio-temporal manner are lacking. Yet, the characterization of the regulation and the elements that determines them depends on valide strategies for visualising them in physiological conditions.We have developped a dual-fluorescent reporter-based system in order to follow alternative splicing event regulation in vivo. It has been applied to five different genes in the model organism Caenorhabditis elegans. Among the genes followed, two follow a potentially stochastic scheme, one show no visible sign of alternative splicing. The last display tissue specific splicing patterns but developed a toxic effect in the animal when expressed from a multicopy extrachromosomal array. To remediate this problem, we decided to develop a method that allows for simpler single copy insertion of fluorescent reporter using CRISPR-Cas.Our results indicates that the dual-fluorescent reporter works well. However, this system can be upgraded by getting close to physiological rates of transcription allowed by single-copy insertion in the genome of C.elegans. We also discovered an alternatiove splicing event which follows a spatial, temporal and conditionnal regulation. Moreover, we constructed a set of different reporter to unravel the regulation observed in the gene top-1.
49

Biochemical characterization of CRISPR-associated nucleases – what determines the specificity of Cas9?

Bratovič, Majda 17 February 2020 (has links)
CRISPR-Cas ist ein adaptives Immunsystem, dass Bakterien und Archaeen vor eindringenden Nukleinsäuren schützt. Es besteht aus einem sogenannten CRISPR-Array, der als genetisches Gedächtnis vorangegangene Infektionen speichert und einem cas Lokus, welcher für die Abwehr essentielle Proteine codiert. Das CRISPR-assoziierte Protein 9 (Cas9) des Typ II CRISPR-Cas Systems aus Streptococcus pyogenes ist heutzutage das Mittel der Wahl für Gentherapie und Genom-Modifikationen. Allerdings gibt es nach wie vor Probleme mit der Ungenauigkeit dieses Systems, welche für eben genannte Ansätze behoben werden müssen. Aus diesem Grund ist es besonders wichtig zu verstehen, in welcher Weise die Spezifität von Cas9 beeinflusst wird. In dieser Arbeit wurden die Voraussetzungen für eine spezifische Erkennung der Zielsequenz durch drei verschiedene Cas9 Proteine des Typs II-A und ein Cas12a Protein des Typs V-A CRISPR-Cas Systems untersucht. Wir zeigen, dass Arginin Seitenketten der sogenannten „bridge“ Helix in Cas9 von S. pyogenes eine wichtige Rolle in der Bindung und Spaltung der DNS spielen. Diese Seitenketten können in zwei Gruppen unterteilt werden, welche die Spezifität von Cas9 entweder vergrößern oder verkleinern. Die Aminosäuren R63 und R66 reduzieren die Spezifität von Cas9 indem sie den sogenannten R-loop in Anwesenheit einer Fehlpaarung stabilisieren. Wir zeigen außerdem, dass Q768 eine erhöhte Toleranz von Cas9 zu Fehlpaarungen an Position 15 der Zielsequenz vermittelt und dass das Entfernen dieser Aminosäure die Spezifität von Cas9 im Bereich der Zielsequenz, die am weitesten von der PAM entfernt ist, erhöht. Eine Kombination der Mutationen der oben genannten Arginin und Glutamin Seitenketten führt zur Erhöhung der Gesamtspezifität von Cas9. Die Ergebnisse dieser Arbeit tragen zum Verständnis bei, wie Cas9 Fehlpaarungen innerhalb der Zielsequenz detektiert und können dabei helfen weitere Strategien für eine verbesserte Spezifität von Cas9 zu entwickeln. / CRISPR-Cas (CRISPR-associated) systems are adaptive immune systems that have evolved in bacteria and archaea for protection against invading nucleic acids. They consist of a CRISPR array, where the genetic memory of the infection is stored and ultimately transcribed and processed into CRISPR RNAs (crRNAs), and of an operon of cas genes that encodes the Cas proteins. This thesis is focused on class 2 CRISPR-Cas systems that employ single RNA-guided nucleases in the interference phase. Dual-RNA guided CRISPR-associated protein 9 (Cas9) of the type II CRISPR-Cas system has become the tool of choice for genome editing applications in life sciences. However, off-target cleavage by Cas9 is one major issue that needs to be addressed for applications of the CRISPR-Cas9 technology for therapeutic purposes. Therefore, understanding the features that govern Cas9 specificity is of great importance. In this thesis, seed sequence requirements of three Cas9 proteins from the class 2 type II-A and one Cas12a protein from the class 2 type V-A CRISPR-Cas system have been investigated. We analyze the influence of mismatches and show that they affect target binding and/or cleavage by S. pyogenes Cas9. Additionally, we demonstrate that the arginine residues from the bridge helix of S. pyogenes Cas9 are important for target DNA binding and cleavage. Furthermore, these residues comprise two groups that either increase or decrease Cas9 sensitivity to mismatches i.e. specificity. R63 and R66 reduce Cas9 specificity by stabilizing the R-loop in the presence of mismatches. We also show that Q768 mediates Cas9 tolerance to a mismatch at target position 15 and removal of Q768 increases Cas9 specificity in the PAM-distal part of the target. Combination of arginine mutations and Q768A increased overall the sensitivity to mismatches. The results of this thesis elucidate how Cas9 senses PAM-adjacent mismatches and provide a basis to develop strategies for Cas9 variants with enhanced specificity.
50

The type I-E CRISPR-Cas system : Biology and applications of an adaptive immune system in bacteria

Amlinger, Lina January 2017 (has links)
CRISPR-Cas systems are adaptive immune systems in bacteria and archaea, consisting of a clustered regularly interspaced short palindromic repeats (CRISPR) array and CRISPR associated (Cas) proteins. In this work, the type I-E CRISPR-Cas system of Escherichia coli was studied. CRISPR-Cas immunity is divided into three stages. In the first stage, adaptation, Cas1 and Cas2 store memory of invaders in the CRISPR array as short intervening sequences, called spacers. During the expression stage, the array is transcribed, and subsequently processed into small CRISPR RNAs (crRNA), each consisting of one spacer and one repeat. The crRNAs are bound by the Cascade multi-protein complex. During the interference step, Cascade searches for DNA molecules complementary to the crRNA spacer. When a match is found, the target DNA is degraded by the recruited Cas3 nuclease. Host factors required for integration of new spacers into the CRISPR array were first investigated. Deleting recD, involved in DNA repair, abolished memory formation by reducing the concentration of the Cas1-Cas2 expression plasmid, leading to decreased amounts of Cas1 to levels likely insufficient for spacer integration. Deletion of RecD has an indirect effect on adaptation. To facilitate detection of adaptation, a sensitive fluorescent reporter was developed where an out-of-frame yfp reporter gene is moved into frame when a new spacer is integrated, enabling fluorescent detection of adaptation. Integration can be detected in single cells by a variety of fluorescence-based methods. A second aspect of this thesis aimed at investigating spacer elements affecting target interference. Spacers with predicted secondary structures in the crRNA impaired the ability of the CRISPR-Cas system to prevent transformation of targeted plasmids. Lastly, in absence of Cas3, Cascade was successfully used to inhibit transcription of specific genes by preventing RNA polymerase access to the promoter. The CRISPR-Cas field has seen rapid development since the first demonstration of immunity almost ten years ago. However, much research remains to fully understand these interesting adaptive immune systems and the research presented here increases our understanding of the type I-E CRISPR-Cas system.

Page generated in 0.0194 seconds