• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 13
  • 11
  • 9
  • 9
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

MS-based quantitative analysis of the CRM1 export pathway and spatial proteomics of the Xenopus laevis oocyte

Karaca, Samir 27 October 2014 (has links)
No description available.
12

Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-binding Sites Involved in Nucleocytoplasmic Transport

Port, Sarah A. 27 April 2015 (has links)
No description available.
13

The prostaglandin 15-deoxy- Δ12,14 -PGJ2 inhibits CRM1 mediated protein export. Analysis of nuclear import of human telomerase reverse transcriptase

Frohnert, Cornelia 15 August 2013 (has links)
No description available.
14

Structure Based Search for Novel Nuclear Export Inhibiting Anti-Tumor Drugs

Shaikhqasem, Alaa 09 July 2020 (has links)
No description available.
15

Biologic Activity of the Novel SINE Compound KPT-335 Against Canine Melanoma Cell Lines

Breit, Megan N. 15 September 2014 (has links)
No description available.
16

Conformational Changes in Ligand Binding Processes

Voß, Béla 30 January 2015 (has links)
No description available.
17

Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis

Matchett, K.B., McFarlane, S., Hamilton, S.E., Eltuhamy, Y.S.A., Davidson, M.A., Murray, J.T., Faheem, A.M., El-Tanani, Mohamed 24 January 2014 (has links)
No / Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
18

A Genome-wide Analysis to Identify and Characterize Novel Genes Involved in tRNA Biology in Saccharomyces cerevisiae

Wu, Jingyan 26 May 2015 (has links)
No description available.
19

Drug Resistance to Topoisomerase Directed Chemotherapy in Human Multiple Myeloma

Turner, Joel G 18 February 2008 (has links)
Human multiple myeloma is an incurable hematological malignancy characterized by the proliferation of plasma cells in the bone marrow. Myeloma represents approximately 20% of all blood cancers. In this research we have explored examples of both intrinsic and acquired drug resistance in myeloma. Topoisomerases are enzymes that are critical for cell division, especially in rapidly dividing cells such as are found in cancer. Topoisomerase poisons are a common group of drugs that are used to treat cancer. Topoisomerase I and II poisons used in the treatment of multiple myeloma include topotecan, mitoxantrone, doxorubicin, and etoposide In order for topoisomerase drugs to be effective, the enzyme must be in direct contact with the DNA. In chapters one and two we examined the export of topoisomerase II alpha from the nucleus as a mechanism of drug resistance. High density cells, similar to those found in the bone marrow, export topoisomerase II alpha from the nucleus to the cytoplasm, rendering the cell drug resistant. We found that blocking nuclear export using the CRM1 inhibitor ratjadone C, or CRM1 specific siRNA, could sensitize high density cells to topoisomerase drugs. Sensitization to topoisomerase inhibitors was correlated with increased topoisomerase/DNA complexes and increased DNA strand breaks. This method of sensitizing human myeloma cells suggests a new therapeutic approach to this disease. In chapter three we examined the role of the molecular transporter ABCG2 in drug resistance in multiple myeloma. We found that ABCG2 expression in myeloma cell lines increased after exposure to topotecan or doxorubicin. Myeloma patients treated with topotecan had an increase in ABCG2 mRNA and protein expression after drug treatment and at relapse. We found that expression of ABCG2 is regulated, at least in part, by promoter methylation both in cell lines and in patient plasma cells. Demethylation of the promoter increased ABCG2 mRNA and protein expression. These findings suggest that ABCG2 is expressed and functional in human myeloma cells, regulated by promoter methylation, affected by cell density, upregulated in response to chemotherapy, and may contribute to drug resistance.
20

From the centrosome to the nuclear envelope and beyond: insights into the role of CRM1 in adenoviral genome delivery

Lagadec, Floriane 31 May 2021 (has links)
Les adénovirus (AdV) sont des virus à ADN se répliquant dans le noyau de la cellule hôte. Pour pouvoir se répliquer, ils détournent la machinerie cellulaire à leur profit. Au cours de l’entrée dans la cellule, les particules virales utilisent la machinerie de transport des microtubules pour rejoindre le noyau. Les AdV interagissent avec la dynéine, moteur moléculaire associé aux microtubules, pour être transportés vers le compartiment nucléaire. Ils se lient alors aux pores nucléaires, structures ancrées dans l’enveloppe nucléaire (EN). Une fois aux pores nucléaires, les capsides virales se désassemblent pour libérer et importer leur génome. Les mécanismes de détachement des microtubules, de translocation nucléaire et d’import du génome des AdV impliquent des facteurs de la machinerie de transport nucléocytoplasmique. Cependant, le mécanisme exact utilisé par les virus pour atteindre les pores nucléaires n’est pas clairement défini. Le transport nucléocytoplasmique est composé de différents facteurs et est hautement régulé dans les cellules. Le transport actif de cargos est dû à des facteurs d’import et d’export interagissant avec RanGTP. Le principal facteur d’export est CRM1 et il est connu pour être essentiel dans la translocation des AdV vers l’EN. L’inhibition de CRM1 par la Leptomycine B conduit à l’accumulation des AdV au centrosome, le principal Centre Organisateur des Microtubules (COMT) des cellules de mammifères. Nous avons donc étudié le rôle de CRM1 dans la libération du génome adénoviral. Nous avons analysé l’interaction des AdVs avec le COMT et nous avons observé que l’absence de facteurs cytoplasmiques ainsi que la perte d’intégrité des microtubules n’affectaient pas leur accumulation au COMT. En revanche, nous avons identifié et caractérisé un mutant de CRM1, qui reste fonctionnel pour l’export physiologique de cargo mais qui induit un retard important dans la translocation des AdV vers l’EN. Nous avons utilisé l’imagerie sur cellules vivantes pour analyser l’infection de l’AdV dans des cellules mitotiques et ceci a permis de révéler le rôle de CRM1 dans la libération du génome de ce virus. Nous avons également identifié un partenaire viral potentiel pour CRM1 parmi les protéines associées au génome viral, la Terminal Protein (TP). Cette protéine possède un signal d’export nucléaire et est un substrat de CRM1. Nos données soulignent le rôle de CRM1 comme un médiateur essentiel au désassemblage total de la capside adénovirale, qui favorise la libération du génome et son import.

Page generated in 0.0273 seconds