• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 65
  • 52
  • 12
  • 10
  • 9
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 398
  • 202
  • 117
  • 107
  • 80
  • 72
  • 70
  • 54
  • 42
  • 41
  • 38
  • 36
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

gcn.MOPS: accelerating cn.MOPS with GPU

Alkhamis, Mohammad 16 June 2017 (has links)
cn.MOPS is a model-based algorithm used to quantitatively detect copy-number variations in next-generation, DNA-sequencing data. The algorithm is implemented as an R package and can speed up processing with multi-CPU parallelism. However, the maximum achievable speedup is limited by the overhead of multi-CPU parallelism, which increases with the number of CPU cores used. In this thesis, an alternative mechanism of process acceleration is proposed. Using one CPU core and a GPU device, the proposed solution, gcn.MOPS, achieved a speedup factor of 159× and decreased memory usage by more than half. This speedup was substantially higher than the maximum achievable speedup in cn.MOPS, which was ∼20×. / Graduate / 0984 / 0544 / 0715 / alkhamis@uvic.ca
82

Online 3D rekonstrukce / Online 3D reconstruction

Bastl, Jiří January 2011 (has links)
This thesis describes reconstruction of scene which is scan trough two cameras. There are described methods of calibration of cameras system, methods for finding the corners and methods for finding correspondences. Corners are searched by FAST detector and for search correspondences are used normalized cross correlation. In the framework of 3D reconstruction is implemented rectification. The final shape is saved to VRML format. In the thesis are described parallelization options. The calculation of the correlation is optimized for multiprocessors CPU and there are designed implementations of algorithm to GPU and FPGA too.
83

Zpracování stereo snímků na grafické kartě / GPU accelerated stereo image processing

Polák, Jaromir January 2013 (has links)
This thesis deals with 3D reconstruction using stereo cameras. This work is to show the usefulness of GPU acceleration for sophisticated algorithm
84

Použití OpenCl v AVG na platformě Windows / Using of OpenCl at AVG in Windows Platform

Bajcar, Martin January 2012 (has links)
The main topic of this thesis is the practical use of OpenCL at AVG company. AVG is looking for ways to decrease hardware requirement of their security product and also to decrease computation time of some algorithms. Using OpenCL is one way to achieve this requirement. Significant part of this thesis deals with optimization strategies for AMD and NVIDIA graphics cards as they are most common cards among users. Practical part of the thesis describes parallelization of two algorithms, their analysis and implementation. After that, the obtained results are presented and cases in which the use of OpenCL is beneficial are identified. As a part of implementation, library containing various utility functions which can aid programmers to implement OpenCL based code was developed.
85

Akcelerace algoritmů pro hledání triplexů v DNA sekvencích / Acceleration of Algorithms for Triplex Detection in DNA Sequences

Weiser, Michal January 2012 (has links)
Triplex forms of DNA act as main factors of some important cell functions. However, their positions within genome and their effect on cell functions are not known well. Triplex search algorithms often don't consider many of triplexs features and the possibility of occurrence of errors. In the other hand the complexity of full featured algorithms is extremely high. This paper shows the way to speed up the algorithm that considers all known triplex features. Parallel aproach allows due to CUDA technology acceleration up to 50.
86

Akcelerace kryptografie pomocí GPU / Cryptography Acceleration Using GPU

Potěšil, Josef January 2011 (has links)
The reader will be familiar with selected concepts of cryptography consited in this work. AES algorithm was selected in conjunction with the description of architecture and software for programming graphic cards (CUDA, OpenCL), in order to create its GPU-accelerated version. This thesis tries to map APIs for communication with crypto-coprocessors, which exist in kernels of Linux/BSD operating systems (CryptoAPI, OCF). It examines this support in the cross-platform OpenSSL library. Subsequently, the work discusses the implementation details, achieved results and integration with OpenSSL library. The conclusion suggests how the developed application could be used and briefly suggests its usage directly by the operating system kernel.
87

Interaktivní simulace chování tkaniny akcelerovaná pomocí GPU / Interactive Cloth Simulation Accelerated by GPU

Melichar, Vojtěch January 2016 (has links)
This master thesis deals with interactive cloth simulation accelerated by GPU. In the first part there is a description of all technologies used during implementation of a program. The second part discusses various simulation methods. It is mainly focused on particle systems as a most used method. These parts are followed by a design of the program, which is implemented as a part of this thesis. The program was implemented in four variants. The first variant is CPU implementation, which was then optimalized with OpenMP. CUDA implementation is based on these implementations. Last variant implemented in this thesis is optimized CUDA implementation. All these implementations are evaluated from compute complexity point of view and suitability for real time graphics.
88

Improving Performance of a Mixed Reality Application on the Edge with Hardware Acceleration

Eriksson, Jesper, Akouri, Christoffer January 2020 (has links)
Using specialized hardware to accelerate workloads have the potential to bring great performance lifts in various applications. Using specialized hardware to speed up the slowest executing component in an application will make the whole application execute faster, since it cannot be faster than it's slowest part. This work investigates two modifications to improve an existing virtual reality application with the help of more hardware support. The existing virtual reality application uses a server computer which handles virtual object rendering, these are later sent to the mobile phone, which is the end user. In this project the server part of the application, where the Simultaneous Localization And Mapping (SLAM) library is run was modified to use a Compute Unified Device Architecture (CUDA) accelerated variant. The software encoder and decoder used for the video streaming were modified to use specialized hardware. Small changes were made to the client-side application to allow the latency measurement to work when changing the server-side encoder. Accelerating SLAM with CUDA showed an increase in the number of processed frames each second, and frame processing time, at the cost of latency between the end and edge device. Using the hardware encoder and decoder resulted in no improvement considering latency or processed frames, in fact, the hardware encoders and decoder performed worse than the baseline configuration. The reduced frame processing time indicates that the CUDA platform is beneficial provided that the additional latency that occurred from the implementation is reduced or removed.
89

Contributions to Parallel Simulation of Equation-Based Models on Graphics Processing Units

Stavåker, Kristian January 2011 (has links)
In this thesis we investigate techniques and methods for parallel simulation of equation-based, object-oriented (EOO) Modelica models on graphics processing units (GPUs). Modelica is being developed through an international effort via the Modelica Association. With Modelica it is possible to build computationally heavy models; simulating such models however might take a considerable amount of time. Therefor techniques of utilizing parallel multi-core architectures for simulation are desirable. The goal in this work is mainly automatic parallelization of equation-based models, that is, it is up to the compiler and not the end-user modeler to make sure that code is generated that can efficiently utilize parallel multi-core architectures. Not only the code generation process has to be altered but the accompanying run-time system has to be modified as well. Adding explicit parallel language constructs to Modelica is also discussed to some extent. GPUs can be used to do general purpose scientific and engineering computing. The theoretical processing power of GPUs has surpassed that of CPUs due to the highly parallel structure of GPUs. GPUs are, however, only good at solving certain problems of data-parallel nature. In this thesis we relate several contributions, by the author and co-workers, to each other. We conclude that the massively parallel GPU architectures are currently only suitable for a limited set of Modelica models. This might change with future GPU generations. CUDA for instance, the main software platform used in the thesis for general purpose computing on graphics processing units (GPGPU), is changing rapidly and more features are being added such as recursion, function pointers, C++ templates, etc.; however the underlying hardware architecture is still optimized for data-parallelism.
90

On the Enhancement of Remote GPU Virtualization in High Performance Clusters

Reaño González, Carlos 01 September 2017 (has links)
Graphics Processing Units (GPUs) are being adopted in many computing facilities given their extraordinary computing power, which makes it possible to accelerate many general purpose applications from different domains. However, GPUs also present several side effects, such as increased acquisition costs as well as larger space requirements. They also require more powerful energy supplies. Furthermore, GPUs still consume some amount of energy while idle and their utilization is usually low for most workloads. In a similar way to virtual machines, the use of virtual GPUs may address the aforementioned concerns. In this regard, the remote GPU virtualization mechanism allows an application being executed in a node of the cluster to transparently use the GPUs installed at other nodes. Moreover, this technique allows to share the GPUs present in the computing facility among the applications being executed in the cluster. In this way, several applications being executed in different (or the same) cluster nodes can share one or more GPUs located in other nodes of the cluster. Sharing GPUs should increase overall GPU utilization, thus reducing the negative impact of the side effects mentioned before. Reducing the total amount of GPUs installed in the cluster may also be possible. In this dissertation we enhance one framework offering remote GPU virtualization capabilities, referred to as rCUDA, for its use in high-performance clusters. While the initial prototype version of rCUDA demonstrated its functionality, it also revealed concerns with respect to usability, performance, and support for new GPU features, which prevented its used in production environments. These issues motivated this thesis, in which all the research is primarily conducted with the aim of turning rCUDA into a production-ready solution for eventually transferring it to industry. The new version of rCUDA resulting from this work presents a reduction of up to 35% in execution time of the applications analyzed with respect to the initial version. Compared to the use of local GPUs, the overhead of this new version of rCUDA is below 5% for the applications studied when using the latest high-performance computing networks available. / Las unidades de procesamiento gráfico (Graphics Processing Units, GPUs) están siendo utilizadas en muchas instalaciones de computación dada su extraordinaria capacidad de cálculo, la cual hace posible acelerar muchas aplicaciones de propósito general de diferentes dominios. Sin embargo, las GPUs también presentan algunas desventajas, como el aumento de los costos de adquisición, así como mayores requerimientos de espacio. Asimismo, también requieren un suministro de energía más potente. Además, las GPUs consumen una cierta cantidad de energía aún estando inactivas, y su utilización suele ser baja para la mayoría de las cargas de trabajo. De manera similar a las máquinas virtuales, el uso de GPUs virtuales podría hacer frente a los inconvenientes mencionados. En este sentido, el mecanismo de virtualización remota de GPUs permite que una aplicación que se ejecuta en un nodo de un clúster utilice de forma transparente las GPUs instaladas en otros nodos de dicho clúster. Además, esta técnica permite compartir las GPUs presentes en el clúster entre las aplicaciones que se ejecutan en el mismo. De esta manera, varias aplicaciones que se ejecutan en diferentes nodos de clúster (o los mismos) pueden compartir una o más GPUs ubicadas en otros nodos del clúster. Compartir GPUs aumenta la utilización general de la GPU, reduciendo así el impacto negativo de las desventajas anteriormente mencionadas. De igual forma, este mecanismo también permite reducir la cantidad total de GPUs instaladas en el clúster. En esta tesis mejoramos un entorno de trabajo llamado rCUDA, el cual ofrece funcionalidades de virtualización remota de GPUs para su uso en clusters de altas prestaciones. Si bien la versión inicial del prototipo de rCUDA demostró su funcionalidad, también reveló dificultades con respecto a la usabilidad, el rendimiento y el soporte para nuevas características de las GPUs, lo cual impedía su uso en entornos de producción. Estas consideraciones motivaron la presente tesis, en la que toda la investigación llevada a cabo tiene como objetivo principal convertir rCUDA en una solución lista para su uso entornos de producción, con la finalidad de transferirla eventualmente a la industria. La nueva versión de rCUDA resultante de este trabajo presenta una reducción de hasta el 35% en el tiempo de ejecución de las aplicaciones analizadas con respecto a la versión inicial. En comparación con el uso de GPUs locales, la sobrecarga de esta nueva versión de rCUDA es inferior al 5% para las aplicaciones estudiadas cuando se utilizan las últimas redes de computación de altas prestaciones disponibles. / Les unitats de processament gràfic (Graphics Processing Units, GPUs) estan sent utilitzades en moltes instal·lacions de computació donada la seva extraordinària capacitat de càlcul, la qual fa possible accelerar moltes aplicacions de propòsit general de diferents dominis. No obstant això, les GPUs també presenten alguns desavantatges, com l'augment dels costos d'adquisició, així com major requeriment d'espai. Així mateix, també requereixen un subministrament d'energia més potent. A més, les GPUs consumeixen una certa quantitat d'energia encara estant inactives, i la seua utilització sol ser baixa per a la majoria de les càrregues de treball. D'una manera semblant a les màquines virtuals, l'ús de GPUs virtuals podria fer front als inconvenients esmentats. En aquest sentit, el mecanisme de virtualització remota de GPUs permet que una aplicació que s'executa en un node d'un clúster utilitze de forma transparent les GPUs instal·lades en altres nodes d'aquest clúster. A més, aquesta tècnica permet compartir les GPUs presents al clúster entre les aplicacions que s'executen en el mateix. D'aquesta manera, diverses aplicacions que s'executen en diferents nodes de clúster (o els mateixos) poden compartir una o més GPUs ubicades en altres nodes del clúster. Compartir GPUs augmenta la utilització general de la GPU, reduint així l'impacte negatiu dels desavantatges anteriorment esmentades. A més a més, aquest mecanisme també permet reduir la quantitat total de GPUs instal·lades al clúster. En aquesta tesi millorem un entorn de treball anomenat rCUDA, el qual ofereix funcionalitats de virtualització remota de GPUs per al seu ús en clústers d'altes prestacions. Si bé la versió inicial del prototip de rCUDA va demostrar la seua funcionalitat, també va revelar dificultats pel que fa a la usabilitat, el rendiment i el suport per a noves característiques de les GPUs, la qual cosa impedia el seu ús en entorns de producció. Aquestes consideracions van motivar la present tesi, en què tota la investigació duta a terme té com a objectiu principal convertir rCUDA en una solució preparada per al seu ús entorns de producció, amb la finalitat de transferir-la eventualment a la indústria. La nova versió de rCUDA resultant d'aquest treball presenta una reducció de fins al 35% en el temps d'execució de les aplicacions analitzades respecte a la versió inicial. En comparació amb l'ús de GPUs locals, la sobrecàrrega d'aquesta nova versió de rCUDA és inferior al 5% per a les aplicacions estudiades quan s'utilitzen les últimes xarxes de computació d'altes prestacions disponibles. / Reaño González, C. (2017). On the Enhancement of Remote GPU Virtualization in High Performance Clusters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86219 / TESIS / Premios Extraordinarios de tesis doctorales

Page generated in 0.0262 seconds