Spelling suggestions: "subject:"cache partitioning"" "subject:"vache partitioning""
1 |
Improving cache Behavior in CMP architectures throug cache partitioning techniquesMoretó Planas, Miquel 19 March 2010 (has links)
The evolution of microprocessor design in the last few decades has changed significantly, moving from simple inorder single core architectures to superscalar and vector architectures in order to extract the maximum available instruction level parallelism. Executing several instructions from the same thread in parallel allows significantly improving the performance of an application. However, there is only a limited amount of parallelism available in each thread, because of data and control dependences. Furthermore, designing a high performance, single, monolithic processor has become very complex due to power and chip latencies constraints. These limitations have motivated the use of thread level parallelism (TLP) as a common strategy for improving processor performance. Multithreaded processors allow executing different threads at the same time, sharing some hardware resources. There are several flavors of multithreaded processors that exploit the TLP, such as chip multiprocessors (CMP), coarse grain multithreading, fine grain multithreading, simultaneous multithreading (SMT), and combinations of them.To improve cost and power efficiency, the computer industry has adopted multicore chips. In particular, CMP architectures have become the most common design decision (combined sometimes with multithreaded cores). Firstly, CMPs reduce design costs and average power consumption by promoting design re-use and simpler processor cores. For example, it is less complex to design a chip with many small, simple cores than a chip with fewer, larger, monolithic cores.Furthermore, simpler cores have less power hungry centralized hardware structures. Secondly, CMPs reduce costs by improving hardware resource utilization. On a multicore chip, co-scheduled threads can share costly microarchitecture resources that would otherwise be underutilized. Higher resource utilization improves aggregate performance and enables lower cost design alternatives.One of the resources that impacts most on the final performance of an application is the cache hierarchy. Caches store data recently used by the applications in order to take advantage of temporal and spatial locality of applications. Caches provide fast access to data, improving the performance of applications. Caches with low latencies have to be small, which prompts the design of a cache hierarchy organized into several levels of cache.In CMPs, the cache hierarchy is normally organized in a first level (L1) of instruction and data caches private to each core. A last level of cache (LLC) is normally shared among different cores in the processor (L2, L3 or both). Shared caches increase resource utilization and system performance. Large caches improve performance and efficiency by increasing the probability that each application can access data from a closer level of the cache hierarchy. It also allows an application to make use of the entire cache if needed.A second advantage of having a shared cache in a CMP design has to do with the cache coherency. In parallel applications, different threads share the same data and keep a local copy of this data in their cache. With multiple processors, it is possible for one processor to change the data, leaving another processor's cache with outdated data. Cache coherency protocol monitors changes to data and ensures that all processor caches have the most recent data. When the parallel application executes on the same physical chip, the cache coherency circuitry can operate at the speed of on-chip communications, rather than having to use the much slower between-chip communication, as is required with discrete processors on separate chips. These coherence protocols are simpler to design with a unified and shared level of cache onchip.Due to the advantages that multicore architectures offer, chip vendors use CMP architectures in current high performance, network, real-time and embedded systems. Several of these commercial processors have a level of the cache hierarchy shared by different cores. For example, the Sun UltraSPARC T2 has a 16-way 4MB L2 cache shared by 8 cores each one up to 8-way SMT. Other processors like the Intel Core 2 family also share up to a 12MB 24-way L2 cache. In contrast, the AMD K10 family has a private L2 cache per core and a shared L3 cache, with up to a 6MB 64-way L3 cache.As the long-term trend of increasing integration continues, the number of cores per chip is also projected to increase with each successive technology generation. Some significant studies have shown that processors with hundreds of cores per chip will appear in the market in the following years. The manycore era has already begun. Although this era provides many opportunities, it also presents many challenges. In particular, higher hardware resource sharing among concurrently executing threads can cause individual thread's performance to become unpredictable and might lead to violations of the individual applications' performance requirements. Current resource management mechanisms and policies are no longer adequate for future multicore systems.Some applications present low re-use of their data and pollute caches with data streams, such as multimedia, communications or streaming applications, or have many compulsory misses that cannot be solved by assigning more cache space to the application. Traditional eviction policies such as Least Recently Used (LRU), pseudo LRU or random are demand-driven, that is, they tend to give more space to the application that has more accesses to the cache hierarchy.When no direct control over shared resources is exercised (the last level cache in this case), it is possible that a particular thread allocates most of the shared resources, degrading other threads performance. As a consequence, high resource sharing and resource utilization can cause systems to become unstable and violate individual applications' requirements. If we want to provide a Quality of Service (QoS) to applications, we need to enhance the control over shared resources and enrich the collaboration between the OS and the architecture.In this thesis, we propose software and hardware mechanisms to improve cache sharing in CMP architectures. We make use of a holistic approach, coordinating targets of software and hardware to improve system aggregate performance and provide QoS to applications. We make use of explicit resource allocation techniques to control the shared cache in a CMP architecture, with resource allocation targets driven by hardware and software mechanisms.The main contributions of this thesis are the following:- We have characterized different single- and multithreaded applications and classified workloads with a systematic method to better understand and explain the cache sharing effects on a CMP architecture. We have made a special effort in studying previous cache partitioning techniques for CMP architectures, in order to acquire the insight to propose improved mechanisms.- In CMP architectures with out-of-order processors, cache misses can be served in parallel and share the miss penalty to access main memory. We take this fact into account to propose new cache partitioning algorithms guided by the memory-level parallelism (MLP) of each application. With these algorithms, the system performance is improved (in terms of throughput and fairness) without significantly increasing the hardware required by previous proposals.- Driving cache partition decisions with indirect indicators of performance such as misses, MLP or data re-use may lead to suboptimal cache partitions. Ideally, the appropriate metric to drive cache partitions should be the target metric to optimize, which is normally related to IPC. Thus, we have developed a hardware mechanism, OPACU, which is able to obtain at run-time accurate predictions of the performance of an application when running with different cache assignments.- Using performance predictions, we have introduced a new framework to manage shared caches in CMP architectures, FlexDCP, which allows the OS to optimize different IPC-related target metrics like throughput or fairness and provide QoS to applications. FlexDCP allows an enhanced coordination between the hardware and the software layers, which leads to improved system performance and flexibility.- Next, we have made use of performance estimations to reduce the load imbalance problem in parallel applications. We have built a run-time mechanism that detects parallel applications sensitive to cache allocation and, in these situations, the load imbalance is reduced by assigning more cache space to the slowest threads. This mechanism, helps reducing the long optimization time in terms of man-years of effort devoted to large-scale parallel applications.- Finally, we have stated the main characteristics that future multicore processors with thousands of cores should have. An enhanced coordination between the software and hardware layers has been proposed to better manage the shared resources in these architectures.
|
2 |
Micro-scheduling and its interaction with cache partitioningChoudhary, Dhruv 05 July 2011 (has links)
The thesis explores the sources of energy inefficiency in asymmetric multi- core architectures where energy efficiency is measured by the energy-delay squared product. The insights gathered from this study drive the development of optimized thread scheduling and coordinated cache management strategies in an important class of asymmetric shared memory architectures. The proposed techniques are founded on well known mathematical optimization techniques yet are lightweight enough to be implemented in practical systems.
|
3 |
CONTROLLING CACHE PARTITIONSIZES TO INCREASE APPLICATIONRELIABILITYSuuronen, Janne, Nasiri, Jawid January 2018 (has links)
A problem with multi-core platforms is the competition of shared cache memory which is also knownas cache contention. Cache contention can negatively affect process reliability, since it can increaseexecution time jitter. Cache contention may be caused by inter-process interference in a system.To minimize the negative effects of inter-process interference, cache memory can be partitionedwhich would isolate processes from each other.In this work, two questions related to cache-coloring based cache partition sizes have been inves-tigated. The first question is how we can use knowledge of execution characteristics of an algorithmto create adequate partition sizes. The second question is to investigate if sweet spots can be foundto determine when cache-coloring based cache partitioning is worth using. The investigation ofthe two questions is conducted using two experiments. The first experiment put focus on howstatic partition sizes affect process reliability and isolation. The second experiment investigatesboth questions by using L3 cache misses caused by a running process to determine partition sizesdynamically.Results from the first experiment shows static partition sizes to increase process reliability andisolation compared to a non-isolated system. The second experiment outcomes shows the dynamicpartition sizes to provide even better process reliability compared to the static approach. Collectively,all results have been fairly identical and therefore sweets spots could not be found. Contributionsfrom our work is a cache partitioning controller and metrics showing the effects of static and dy-namic partitions sizes.
|
4 |
Operating System Management of Shared Caches on Multicore ProcessorsTam, David Kar Fai 01 September 2010 (has links)
Our thesis is that operating systems should manage the on-chip shared caches of multicore processors for the purposes of achieving performance gains. Consequently, this dissertation demonstrates how the operating system can profitably manage these shared caches. Two shared-cache management principles are investigated: (1) promoting shared use of the shared cache, demonstrated by an automated online thread clustering technique, and (2) providing cache space isolation, demonstrated by a software-based cache partitioning technique. In support of providing isolation, cache provisioning is also investigated, demonstrated by an automated online technique called RapidMRC. We show how these software-based techniques are feasible on existing multicore systems with the help of their hardware performance monitoring units and their associated hardware performance counters. On a 2-chip IBM POWER5 multicore system, promoting sharing reduced processor pipeline stalls caused by cross-chip cache accesses by up to 70%, resulting in performance improvements of up to 7%. On a larger 8-chip IBM POWER5+ multicore system, the potential for up to 14% performance improvement was measured. Providing isolation improved performance by up to 50%, using an exhaustive offline search method to determine optimal partition size. On the other hand, up to 27% performance improvement was extracted from the corresponding workload using an automated online approximation technique, made possible by RapidMRC.
|
5 |
Operating System Management of Shared Caches on Multicore ProcessorsTam, David Kar Fai 01 September 2010 (has links)
Our thesis is that operating systems should manage the on-chip shared caches of multicore processors for the purposes of achieving performance gains. Consequently, this dissertation demonstrates how the operating system can profitably manage these shared caches. Two shared-cache management principles are investigated: (1) promoting shared use of the shared cache, demonstrated by an automated online thread clustering technique, and (2) providing cache space isolation, demonstrated by a software-based cache partitioning technique. In support of providing isolation, cache provisioning is also investigated, demonstrated by an automated online technique called RapidMRC. We show how these software-based techniques are feasible on existing multicore systems with the help of their hardware performance monitoring units and their associated hardware performance counters. On a 2-chip IBM POWER5 multicore system, promoting sharing reduced processor pipeline stalls caused by cross-chip cache accesses by up to 70%, resulting in performance improvements of up to 7%. On a larger 8-chip IBM POWER5+ multicore system, the potential for up to 14% performance improvement was measured. Providing isolation improved performance by up to 50%, using an exhaustive offline search method to determine optimal partition size. On the other hand, up to 27% performance improvement was extracted from the corresponding workload using an automated online approximation technique, made possible by RapidMRC.
|
6 |
Adaptive Prefetching and Cache Partitioning for Multicore ProcessorsSelfa Oliver, Vicent 13 November 2018 (has links)
El acceso a la memoria principal en los procesadores actuales supone un importante cuello de botella para las prestaciones, dado que los diferentes núcleos compiten por el limitado ancho de banda de memoria, agravando la brecha entre las prestaciones del procesador y las de la memoria principal. Distintas técnicas atacan este problema, siendo las más relevantes el uso de jerarquías de caché multinivel y la prebúsqueda.
Las cachés jerárquicas aprovechan la localidad temporal y espacial que en general presentan los programas en el acceso a los datos, para mitigar las enormes latencias de acceso a memoria principal. Para limitar el número de accesos a la memoria DRAM, fuera del chip, los procesadores actuales cuentan con grandes cachés de último nivel (LLC). Para mejorar su utilización y reducir costes, estas cachés suelen compartirse entre todos los núcleos del procesador. Este enfoque mejora significativamente el rendimiento de la mayoría de las aplicaciones en comparación con el uso de cachés privados más pequeños. Compartir la caché, sin embargo, presenta una problema importante: la interferencia entre aplicaciones. La prebúsqueda, por otro lado, trae bloques de datos a las cachés antes de que el procesador los solicite, ocultando la latencia de memoria principal. Desafortunadamente, dado que la prebúsqueda es una técnica especulativa, si no tiene éxito puede contaminar la caché con bloques que no se usarán. Además, las prebúsquedas interfieren con los accesos a memoria normales, tanto los del núcleo que emite las prebúsquedas como los de los demás. Esta tesis se centra en reducir la interferencia entre aplicaciones, tanto en las caché compartidas como en el acceso a la memoria principal. Para reducir la interferencia entre aplicaciones en el acceso a la memoria principal, el mecanismo propuesto en esta disertación regula la agresividad de cada prebuscador, activando o desactivando selectivamente algunos de ellos, dependiendo de su rendimiento individual y de los requisitos de ancho de banda de memoria principal de los otros núcleos. Con respecto a la interferencia en cachés compartidos, esta tesis propone dos técnicas de particionado para la LLC, las cuales otorgan más espacio de caché a las aplicaciones que progresan más lentamente debido a la interferencia entre aplicaciones. La primera propuesta de particionado de caché requiere hardware específico no disponible en procesadores comerciales, por lo que se ha evaluado utilizando un entorno de simulación. La segunda propuesta de particionado de caché presenta una familia de políticas que superan las limitaciones en el número de particiones y en el número de vías de caché disponibles mediante la agrupación de aplicaciones en clústeres y la superposición de particiones de caché, por lo que varias aplicaciones comparten las mismas vías. Dado que se ha implementado utilizando los mecanismos para el particionado de la LLC que presentan algunos procesadores Intel modernos, esta propuesta ha sido evaluada en una máquina real.
Los resultados experimentales muestran que el mecanismo de prebúsqueda selectiva propuesto en esta tesis reduce el número de solicitudes de memoria principal en un 20%, cosa que se traduce en mejoras en la equidad del sistema, el rendimiento y el consumo de energía. Por otro lado, con respecto a los esquemas de partición propuestos, en comparación con un sistema sin particiones, ambas propuestas reducen la iniquidad del sistema en un promedio de más del 25%, independientemente de la cantidad de aplicaciones en ejecución, y esta reducción en la injusticia no afecta negativamente al rendimiento. / Accessing main memory represents a major performance bottleneck in current processors, since the different cores compete among them for the limited offchip bandwidth, aggravating even more the so called memory wall. Several techniques have been applied to deal with the core-memory performance gap, with the most preeminent ones being prefetching and hierarchical caching.
Hierarchical caches leverage the temporal and spacial locality of the accessed data, mitigating the huge main memory access latencies. To limit the number of accesses to the off-chip DRAM memory, current processors feature large Last Level Caches. These caches are shared between all the cores to improve the utilization of the cache space and reduce cost. This approach significantly improves the performance of most applications compared to using smaller private caches. Cache sharing, however, presents an important shortcoming: the interference between applications. Prefetching, on the other hand, brings data blocks to the caches before they are requested, hiding the main memory latency. Unfortunately, since prefetching is a speculative technique, inaccurate prefetches may pollute the cache with blocks that will not be used. In addition, the prefetches interfere with the regular memory requests, both the ones from the application running on the core that issued the prefetches and the others.
This thesis focuses on reducing the inter-application interference, both in the shared cache and in the access to the main memory. To reduce the interapplication interference in the access to main memory, the proposed approach regulates the aggressiveness of each core prefetcher, and selectively activates or deactivates some of them, depending on their individual performance and the main memory bandwidth requirements of the other cores. With respect to interference in shared caches, this thesis proposes two LLC partitioning techniques that give more cache space to the applications that have their progress diminished due inter-application interferences. The first cache partitioning proposal requires dedicated hardware not available in commercial processors, so it has been evaluated using a simulation framework. The second proposal dealing with cache partitioning presents a family of partitioning policies that overcome the limitations in the number of partitions and the number of available ways by grouping applications and overlapping cache partitions, so multiple applications share the same ways. Since it has been implemented using the cache partitioning features of modern Intel processors it has been evaluated in a real machine.
Experimental results show that the proposed selective prefetching mechanism reduces the number of main memory requests by 20%, which translates to improvements in unfairness, performance, and energy consumption. On the other hand, regarding the proposed partitioning schemes, compared to a system with no partitioning, both reduce unfairness more than 25% on average, regardless of the number of applications running in the multicore, and this reduction in unfairness does not negatively affect the performance. / L'accés a la memòria principal en els processadors actuals suposa un important coll d'ampolla per a les prestacions, ja que els diferents nuclis competeixen pel limitat ample de banda de memòria, agreujant la bretxa entre les prestacions del processador i les de la memòria principal. Diferents tècniques ataquen aquest problema, sent les més rellevants l'ús de jerarquies de memòria cau multinivell i la prebusca.
Les memòries cau jeràrquiques aprofiten la localitat temporal i espacial que en general presenten els programes en l'accés a les dades per mitigar les enormes latències d'accés a memòria principal. Per limitar el nombre d'accessos a la memòria DRAM, fora del xip, els processadors actuals compten amb grans caus d'últim nivell (LLC). Per millorar la seva utilització i reduir costos, aquestes memòries cau solen compartir-se entre tots els nuclis del processador. Aquest enfocament millora significativament el rendiment de la majoria de les aplicacions en comparació amb l'ús de caus privades més menudes. Compartir la memòria cau, no obstant, presenta una problema important: la interferencia entre aplicacions. La prebusca, per altra banda, porta blocs de dades a les memòries cau abans que el processador els sol·licite, ocultant la latència de memòria principal. Desafortunadament, donat que la prebusca és una técnica especulativa, si no té èxit pot contaminar la memòria cau amb blocs que no fan falta. A més, les prebusques interfereixen amb els accessos normals a memòria, tant els del nucli que emet les prebusques com els dels altres.
Aquesta tesi es centra en reduir la interferència entre aplicacions, tant en les cau compartides com en l'accés a la memòria principal. Per reduir la interferència entre aplicacions en l'accés a la memòria principal, el mecanismo proposat en aquesta dissertació regula l'agressivitat de cada prebuscador, activant o desactivant selectivament alguns d'ells, en funció del seu rendiment individual i dels requisits d'ample de banda de memòria principal dels altres nuclis. Pel que fa a la interferència en caus compartides, aquesta tesi proposa dues tècniques de particionat per a la LLC, les quals atorguen més espai de memòria cau a les aplicacions que progressen més lentament a causa de la interferència entre aplicacions. La primera proposta per al particionat de memòria cau requereix hardware específic no disponible en processadors comercials, per la qual cosa s'ha avaluat utilitzant un entorn de simulació. La segona proposta de particionat per a memòries cau presenta una família de polítiques que superen les limitacions en el nombre de particions i en el nombre de vies de memòria cau disponibles mitjan¿ cant l'agrupació d'aplicacions en clústers i la superposició de particions de memòria cau, de manera que diverses aplicacions comparteixen les mateixes vies. Atès que s'ha implementat utilitzant els mecanismes per al particionat de la LLC que ofereixen alguns processadors Intel moderns, aquesta proposta s'ha avaluat en una màquina real.
Els resultats experimentals mostren que el mecanisme de prebusca selectiva proposat en aquesta tesi redueix el nombre de sol·licituds a la memòria principal en un 20%, cosa que es tradueix en millores en l'equitat del sistema, el rendiment i el consum d'energia. Per altra banda, pel que fa als esquemes de particiónat proposats, en comparació amb un sistema sense particions, ambdues propostes redueixen la iniquitat del sistema en més d'un 25% de mitjana, independentment de la quantitat d'aplicacions en execució, i aquesta reducció en la iniquitat no afecta negativament el rendiment. / Selfa Oliver, V. (2018). Adaptive Prefetching and Cache Partitioning for Multicore Processors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112423
|
7 |
Architecture multi-coeurs et temps d'exécution au pire cas / Multicore architectures and worst-case execution timeLesage, Benjamin 21 May 2013 (has links)
Les tâches critiques en systèmes temps-réel sont soumises à des contraintes temporelles et de correction. La validation d'un tel système repose sur l'estimation du comportement temporel au pire cas de ses tâches. Le partage de ressources, inhérent aux architectures multi-cœurs, entrave le calcul de ces estimations. Le comportement temporel d'une tâche dépend de ses rivales du fait de l'arbitrage de l'accès aux ressources ou de modifications concurrentes de leur état. Cette étude vise à l'estimation de la contribution temporelle de la hiérarchie mémoire au pire temps d'exécution de tâches critiques. Les méthodes existantes, pour caches d'instructions, sont étendues afin de supporter caches de données privés et partagés, et permettre l'analyse de hiérarchies mémoires riches. Le court-circuitage de cache est ensuite utilisé pour réduire la pression sur les caches partagés. Nous proposons à cette fin différentes heuristiques basées sur la capture de la réutilisation de blocs de cache entre différents accès mémoire. Notre seconde proposition est la politique de partitionnement Preti qui permet l'allocation d'un espace sans conflits à une tâche. Preti favorise aussi les performances de tâches non critiques concurrentes aux temps-réel dans les systèmes de criticité hybride. / Critical tasks in the context of real-time systems submit to both timing and correctness constraints. Whence, the validation of a real-time system rely on the estimation of its tasks’ Worst case execution times. Resource sharing, as it occurs on multicore architectures, hinders the computation of such estimates. The timing behaviour of a task is impacted by its concurrents, whether because of resource access arbitration or concurrent modifications of a resource state. This study focuses on estimating the contribution of the memory hierarchy to tasks’ worst case execution time. Existing analysis methods, defined for instruction caches, are extended to support private and shared data caches, hence allowing for the analysis of rich memory hierarchies. Cache bypass is then used to reduce the pressure laid by concurrent tasks on shared caches levels. We propose different bypass heuristics, based on the capture of cache blocks’ reuse between memory accesses. Our second proposal is the Preti partitioning scheme which allows for the allocation to tasks of a cache space, free from inter-task conflicts. Preti offers the added benefit of providing for average-case performance to non-critical tasks concurrent to real-time ones on hybrid criticality systems.
|
8 |
Interference Analysis and Resource Management in Server Processors: from HPC to Cloud ComputingPons Escat, Lucía 01 September 2023 (has links)
[ES] Una de las principales preocupaciones de los centros de datos actuales es maximizar la utilización de los servidores. En cada servidor se ejecutan simultáneamente varias aplicaciones para aumentar la eficiencia de los recursos. Sin embargo, las prestaciones dependen en gran medida de la proporción de recursos que recibe cada aplicación. El mayor número de núcleos (y de aplicaciones ejecutándose) con cada nueva generación de procesadores hace que crezca la preocupación por la interferencia en los recursos compartidos. Esta tesis se centra en mitigar la interferencia cuando diferentes aplicaciones se consolidan en un mismo procesador desde dos perspectivas: computación de alto rendimiento (HPC) y computación en la nube.
En el contexto de HPC, esta tesis propone políticas de gestión para dos de los recursos más críticos: la caché de último nivel (LLC) y los núcleos del procesador. La LLC desempeña un papel clave en las prestaciones de los procesadores actuales al reducir considerablemente el número de accesos de alta latencia a memoria principal. Se proponen estrategias de particionado de la LLC tanto para cachés inclusivas como no inclusivas, ambos diseños presentes en los procesadores para servidores actuales. Para los esquemas, se detectan nuevos comportamientos problemáticos y se asigna un mayor espacio de caché a las aplicaciones que hacen mejor uso de este. En cuanto a los núcleos del procesador, muchas aplicaciones paralelas (como aplicaciones de grafos) no escalan bien con un mayor número de núcleos. Además, el planificador de Linux aplica una estrategia de tiempo compartido que no ofrece buenas prestaciones cuando se ejecutan aplicaciones de grafo. Para maximizar la utilización del sistema, esta tesis propone ejecutar múltiples aplicaciones de grafo en el mismo procesador, asignando a cada una el número óptimo de núcleos (y adaptando el número de hilos creados) dinámicamente.
En cuanto a la computación en la nube, esta tesis aborda tres grandes retos: la compleja infraestructura de estos sistemas, las características de sus aplicaciones y el impacto de la interferencia entre máquinas virtuales (MV). Primero, esta tesis presenta la plataforma experimental desarrollada con los principales componentes de un sistema en la nube. Luego, se presenta un amplio estudio de caracterización sobre un conjunto de aplicaciones de latencia crítica representativas con el fin de identificar los puntos que los proveedores de servicios en la nube deben tener en cuenta para mejorar el rendimiento y la utilización de los recursos. Por último, se realiza una propuesta que permite detectar y estimar dinámicamente la interferencia entre MV. El enfoque usa métricas que pueden monitorizarse fácilmente en la nube pública, ya que las MV deben tratarse como "cajas negras". Toda la investigación descrita se lleva a cabo respetando las restricciones y cumpliendo los requisitos para ser aplicable en entornos de producción de nube pública.
En resumen, esta tesis aborda la contención en los principales recursos compartidos del sistema en el contexto de la consolidación de servidores. Los resultados experimentales muestran importantes ganancias sobre Linux. En los procesadores con LLC inclusiva, el tiempo de ejecución (TT) se reduce en más de un 40%, mientras que se mejora el IPC más de un 3%. Con una LLC no inclusiva, la equidad y el TT mejoran en un 44% y un 24%, respectivamente, al mismo tiempo que se mejora el rendimiento hasta un 3,5%. Al distribuir los núcleos del procesador de forma eficiente, se alcanza una equidad casi perfecta (94%), y el TT se reduce hasta un 80%. En entornos de computación en la nube, la degradación del rendimiento puede estimarse con un error de un 5% en la predicción global. Todas las propuestas presentadas han sido diseñadas para ser aplicadas en procesadores comerciales sin requerir ninguna información previa, tomando las decisiones dinámicamente con datos recogidos de los contadores de prestaciones. / [CAT] Una de les principals preocupacions dels centres de dades actuals és maximitzar la utilització dels servidors. A cada servidor s'executen simultàniament diverses aplicacions per augmentar l'eficiència dels recursos. Tot i això, el rendiment depèn en gran mesura de la proporció de recursos que rep cada aplicació. El nombre creixent de nuclis (i aplicacions executant-se) amb cada nova generació de processadors fa que creixca la preocupació per l'efecte causat per les interferències en els recursos compartits. Aquesta tesi se centra a mitigar la interferència en els recursos compartits quan diferents aplicacions es consoliden en un mateix processador des de dues perspectives: computació d'alt rendiment (HPC) i computació al núvol.
En el context d'HPC, aquesta tesi proposa polítiques de gestió per a dos dels recursos més crítics: la memòria cau d'últim nivell (LLC) i els nuclis del processador. La LLC exerceix un paper clau a les prestacions del sistema en els processadors actuals reduint considerablement el nombre d'accessos d'alta latència a la memòria principal. Es proposen estratègies de particionament de la LLC tant per a caus inclusives com no inclusives, ambdós dissenys presents en els processadors actuals. Per als dos esquemes, se detecten nous comportaments problemàtics i s'assigna un major espai de memòria cau a les aplicacions que en fan un millor ús. Pel que fa als nuclis del processador, moltes aplicacions paral·leles (com les aplicacions de graf) no escalen bé a mesura que s'incrementa el nombre de nuclis. A més, el planificador de Linux aplica una estratègia de temps compartit que no ofereix bones prestacions quan s'executen aplicacions de graf. Per maximitzar la utilització del sistema, aquesta tesi proposa executar múltiples aplicacions de grafs al mateix processador, assignant a cadascuna el nombre òptim de nuclis (i adaptant el nombre de fils creats) dinàmicament.
Pel que fa a la computació al núvol, aquesta tesi aborda tres grans reptes: la complexa infraestructura d'aquests sistemes, les característiques de les seues aplicacions i l'impacte de la interferència entre màquines virtuals (MV). En primer lloc, aquesta tesi presenta la plataforma experimental desenvolupada amb els principals components d'un sistema al núvol. Després, es presenta un ampli estudi de caracterització sobre un conjunt d'aplicacions de latència crítica representatives per identificar els punts que els proveïdors de serveis al núvol han de tenir en compte per millorar el rendiment i la utilització dels recursos. Finalment, es fa una proposta que de manera dinàmica permet detectar i estimar la interferència entre MV. L'enfocament es basa en mètriques que es poden monitoritzar fàcilment al núvol públic, ja que les MV han de tractar-se com a "caixes negres". Tota la investigació descrita es duu a terme respectant les restriccions i complint els requisits per ser aplicable en entorns de producció al núvol públic.
En resum, aquesta tesi aborda la contenció en els principals recursos compartits del sistema en el context de la consolidació de servidors. Els resultats experimentals mostren que s'obtenen importants guanys sobre Linux. En els processadors amb una LLC inclusiva, el temps d'execució (TT) es redueix en més d'un 40%, mentres que es millora l'IPC en més d'un 3%. En una LLC no inclusiva, l'equitat i el TT es milloren en un 44% i un 24%, respectivament, al mateix temps que s'obté una millora del rendiment de fins a un 3,5%. Distribuint els nuclis del processador de manera eficient es pot obtindre una equitat quasi perfecta (94%), i el TT pot reduir-se fins a un 80%. En entorns de computació al núvol, la degradació del rendiment pot estimar-se amb un error de predicció global d'un 5%. Totes les propostes presentades en aquesta tesi han sigut dissenyades per a ser aplicades en processadors de servidors comercials sense requerir cap informació prèvia, prenent decisions dinàmicament amb dades recollides dels comptadors de prestacions. / [EN] One of the main concerns of today's data centers is to maximize server utilization. In each server processor, multiple applications are executed concurrently, increasing resource efficiency. However, performance and fairness highly depend on the share of resources that each application receives, leading to performance unpredictability. The rising number of cores (and running applications) with every new generation of processors is leading to a growing concern for interference at the shared resources. This thesis focuses on addressing resource interference when different applications are consolidated on the same server processor from two main perspectives: high-performance computing (HPC) and cloud computing.
In the context of HPC, resource management approaches are proposed to reduce inter-application interference at two major critical resources: the last level cache (LLC) and the processor cores. The LLC plays a key role in the system performance of current multi-cores by reducing the number of long-latency main memory accesses. LLC partitioning approaches are proposed for both inclusive and non-inclusive LLCs, as both designs are present in current server processors. In both cases, newly problematic LLC behaviors are identified and efficiently detected, granting a larger cache share to those applications that use best the LLC space. As for processor cores, many parallel applications, like graph applications, do not scale well with an increasing number of cores. Moreover, the default Linux time-sharing scheduler performs poorly when running graph applications, which process vast amounts of data. To maximize system utilization, this thesis proposes to co-locate multiple graph applications on the same server processor by assigning the optimal number of cores to each one, dynamically adapting the number of threads spawned by the running applications.
When studying the impact of system-shared resources on cloud computing, this thesis addresses three major challenges: the complex infrastructure of cloud systems, the nature of cloud applications, and the impact of inter-VM interference. Firstly, this thesis presents the experimental platform developed to perform representative cloud studies with the main cloud system components (hardware and software). Secondly, an extensive characterization study is presented on a set of representative latency-critical workloads which must meet strict quality of service (QoS) requirements. The aim of the studies is to outline issues cloud providers should consider to improve performance and resource utilization. Finally, we propose an online approach that detects and accurately estimates inter-VM interference when co-locating multiple latency-critical VMs. The approach relies on metrics that can be easily monitored in the public cloud as VMs are handled as ``black boxes''. The research described above is carried out following the restrictions and requirements to be applicable to public cloud production systems.
In summary, this thesis addresses contention in the main system shared resources in the context of server consolidation, both in HPC and cloud computing. Experimental results show that important gains are obtained over the Linux OS scheduler by reducing interference. In inclusive LLCs, turnaround time (TT) is reduced by over 40% while improving IPC by more than 3%. In non-inclusive LLCs, fairness and TT are improved by 44% and 24%, respectively, while improving performance by up to 3.5%. By distributing core resources efficiently, almost perfect fairness can be obtained (94%), and TT can be reduced by up to 80%. In cloud computing, performance degradation due to resource contention can be estimated with an overall prediction error of 5%. All the approaches proposed in this thesis have been designed to be applied in commercial server processors without requiring any prior information, making decisions dynamically with data collected from hardware performance counters. / Pons Escat, L. (2023). Interference Analysis and Resource Management in Server Processors: from HPC to Cloud Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/195840
|
Page generated in 0.127 seconds