• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • Tagged with
  • 36
  • 36
  • 36
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Genetic Analysis of Genomic Stability in <em>Caenorhabditis Elegans</em>: A Dissertation

Auclair, Melissa M. 18 September 2007 (has links)
In humans, Bloom’s Syndrome is caused by a mutation of the RecQ helicase BLM. Patients with Bloom’s Syndrome exhibit a high amount of genomic instability which results in a high incidence of cancer. Though Bloom’s Syndrome has been intensively studied, there are still many questions about the function of BLM which need to be answered. While it is clear that loss of BLM increases genomic instability, the other effects of genomic instability on the organism aside from cancer such as a potential effect on aging, have yet to be elucidated. In Chapter II, I identify new phenotypes in the C. elegans ortholog of BLM, him-6. him-6 mutants have an increased rate of cell death, a mortal germ line phenotype, and an increased rate of mutations. Upon further examination of the mutator phenotype, it was determined that the increased rate of mutations was caused by small insertions and deletions. The mutator phenotype identified in him-6 mutants closely mimics the cellular phenotype seen in Bloom’s Syndrome cells. This indicates that HIM-6 may behave in a similar fashion to BLM. In addition to the mutator phenotype, it was found that loss of him-6causes a shortened life span. This may provide evidence that there is a link between genomic stability and aging. In Chapter III, I identify a new role for the transcription factor DAF-16. DAF-16 in C. elegans has been intensively studied and regulates a wide variety of pathways. In this chapter, I demonstrate via the well established unc-93 assay that loss of daf-16 causes a subtle mutator phenotype in C. elegans. This indicates that DAF-16 may play a role in suppression of spontaneous mutation. When I examined other classic genomic instability phenotypes, I found at 25°C, the number of progeny in the DAF-16 mutants was significantly reduced compared to wild type worms. Additionally, I demonstrate daf-16(mu86)has a cell death defect. This study identifies several new phenotypes caused by a loss of him-6. These phenotypes provide further evidence that loss of him-6 causes genomic instability. In addition, this study also demonstrates that him-6 has a shortened life span which may be due to genomic instability. Secondly, this study identifies a new role for DAF-16 in preventing the occurrence of spontaneous mutations. This may indicate a novel function for DAF-16 in maintaining genomic stability.
22

Conserved Nucleosome Remodeling/Histone Deacetylase Complex and Germ/Soma Distinction in <em>C. elegans</em>: A Dissertation

Unhavaithaya, Yingdee 22 August 2003 (has links)
A rapid cascade of regulatory events defines the differentiated fates of embryonic cells, however, once established, these differentiated fates and the underlying transcriptional programs can be remarkably stable. Here, we describe two proteins, MEP-1, a novel protein, and LET-418/Mi-2, both of which are required for the maintenance of somatic differentiation in C. elegans. MEP-1 was identified as an interactor of PIE-1, a germ-specific protein required for germ cell specification, while LET-418 is a protein homologous to Mi-2, a core component of the nuc1eosome remodeling/histone deacetylase (NuRD) complex. In animals lacking MEP-1 and LET-418, germline-specific genes become derepressed in somatic cells, and Polycomb group (PcG) and SET domain-related proteins promote this ectopic expression. We demonstrate that PIE-1 forms a complex with MEP-1, LET-418, and HDA-1. Furthermore, we show that the overexpression of PIE-1 can mimic the mep-1/let-418 phenotype, and that PIE-1 can inhibit the Histone deacetylase activity of the HDA-1 complex in COS cells. Our findings support a model in which PIE-1 transiently inhibits MEP-1 and associated factors to maintain the pluripotency of germ cells, while at later times MEP-1 and LET-418 remodel chromatin to establish new stage- or cell-type-specific differentiation potential.
23

A Study of Cell Polarity and Fate Specification in Early <em>C. Elegans</em> Embryos: A Dissertation

Kim, Soyoung 23 May 2008 (has links)
Asymmetric cell divisions constitute a basic foundation of animal development, providing a mechanism for placing specific cell types at defined positions in a developing organism. In a 4-cell stage embryo in Caenorhabditis elegansthe EMS cell divides asymmetrically to specify intestinal cells, which requires a polarizing signal from the neighboring P2 cell. Here we describe how the extracellular signal from P2 is transmitted from the membrane to the nucleus during asymmetric EMS cell division, and present the identification of additional components in the pathways that accomplish this signaling. P2/EMS signaling involves multiple inputs, which impinge on the Wnt, MAPK-like, and Src pathways. Transcriptional outputs downstream of these pathways depend on a homolog of β-catenin, WRM-1. Here we analyze the regulation of WRM-1, and show that the MAPK-like pathway maintains WRM-1 at the membrane, while its release and nuclear translocation depend on Wnt/Src signaling and sequential phosphorylation events by the major cell-cycle regulator CDK-1 and by the membrane-bound GSK-3 during EMS cell division. Our results provide novel mechanistic insights into how the signaling events at the cortex are coupled to the asymmetric EMS cell division through WRM-1. To identify additional regulators in the pathways governing gut specification, we performed suppressor genetic screens using temperature-sensitive alleles of the gutless mutant mom-2/Wnt, and extra-gut mutant cks-1. Five intragenic suppressors and three semi-dominant suppressors were isolated in mom-2 suppressor screens. One extragenic suppressor was mapped to the locus ifg-1, eukaryotic translation initiation factor eIF4G. From the suppressor screen using cks-1(ne549), an allele of the self-cleaving nucleopore protein npp-10 was identified as a suppressor of cks-1(ne549)and other extra-gut mutants. Taken together, these results help us better understand how the fate of intestinal cells are specified and regulated in early C. elegans embryos and broaden our knowledge of cell polarity and fate specification.
24

Understanding the Sequence-Specificity and RNA Target Recognition Properties of the Oocyte Maturation Factor, OMA-1, in Caenorhabditis elegans: A Dissertation

Kaymak, Ebru 28 April 2016 (has links)
Maternally supplied mRNAs encode for necessary developmental regulators that pattern early embryos in many species until zygotic transcription is activated. In Caenorhabditis elegans, post-transcriptional regulatory mechanisms guide early development during embryogenesis. Maternal transcripts remain in a translationally silenced state until fertilization. A suite of RNA-binding proteins (RBP’s) regulate these maternally supplied mRNAs during oogenesis, the oocyte-to-embryo transition, and early embryogenesis. Identifying the target specificity of these RNA-binding proteins will reveal their contribution to patterning of the embryo. We are studying post-transcriptional regulation of maternal mRNAs during oocyte maturation, which is an essential part of meiosis that prepares oocytes for fertilization. Although the physiological events taking place during oocyte maturation have been well studied, the molecular mechanisms that regulate oocyte maturation are not well understood. OMA-1 and OMA-2 are essential CCCH-type tandem zinc finger (TZF) RBP’s that function redundantly during oocyte maturation. This dissertation shows that I defined the RNA-binding specificity of OMA-1, and demonstrated that OMA-1/2 are required to repress the expression of 3ʹUTR reporters in developing oocytes. The recovered sequences from in vitro selection demonstrated that OMA-1 binds UAA and UAU repeats in a cooperative fashion. Interestingly, OMA-1 binds with high affinity to a conserved region of the glp-1 3ʹUTR that is rich in UAA and UAU repeats. Multiple RNA-binding proteins regulate translation of GLP-1 protein, a homolog of Notch receptor. In addition to previously identified RBP’s, we showed that OMA-1 and OMA-2 repress glp-1 reporter expression in C. elegans oocytes. Mapping the OMA-1 dependent regulatory sites in the glp-1 mRNA and characterizing the interplay between OMA-1 and other factors will help reveal how multiple regulatory signals coordinate the transition from oocyte to embryo but the abundance of OMA-1 binding motifs within the glp-1 3ʹUTR makes it infeasible to identify sites with a functional consequence. I therefore first developed a strategy that allowed us to generate transgenic strains efficiently using a library adaptation of MosSCI transgenesis in combination with rapid RNAi screening to identify RBP-mRNA interactions with a functional consequence. This allowed me to identify five novel mRNA targets of OMA-1 with an in vivo regulatory connection. In conclusion, the findings in this dissertation provide new insights into OMA-1 mediated mRNA regulation and provide new tools for C. elegans transgenesis. Development of library MosSCI will advance functional mapping of OMA-1 dependent regulatory sites in the target mRNAs. Extending this strategy to map functional interactions between mRNA targets and RNAbinding proteins in will help reveal how multiple regulatory binding events coordinate complex cellular events such as oocyte to embryo transition and cell-fate specification.
25

RNA Recognition by the Caenorhabditis elegans Embryonic Determinants MEX-5 and MEX-3: A Dissertation

Pagano, John M., Jr. 01 June 2010 (has links)
Post-transcriptional regulation of gene expression is a mechanism that governs developmental and cellular events in metazoans. In early embryogenesis, transcriptionally quiescent cells depend upon maternally supplied factors such as RNA binding proteins and RNA that control key decisions. Morphogen gradients form and in turn pattern the early embryo generating different cell types and spatial order. In the nematode Caenorhabditis elegans, the early embryo relies upon several RNA binding proteins that control mRNA stability, translation efficiency, and/or mRNA localization of cell fate determinants essential for proper development. MEX-5 and MEX-3 are two conserved RNA-binding proteins required to pattern the anterior/posterior axis and early embryo. Mutation of either gene results in a maternal effect lethal phenotype with proliferating posterior muscle into the anterior blastomeres (Muscle EXcess). Several cell-fate determinants are aberrantly expressed in mex-5 and mex-3 embryos. Both proteins are thought to interact with cis-regulatory elements present in 3’-UTRs of target RNAs controlling their metabolism. However, previous studies failed to demonstrate that these proteins regulate maternal transcripts directly. This dissertation presents a thorough assessment of the RNA binding properties of MEX-5 and MEX-3. Quantitative biochemical approaches were used to determine the RNA binding specificity of both proteins. MEX-5 has a relaxed specificity, binding with high affinity to linear RNA containing a tract of six or more uridines within an eight-nucleotide window. This is very different from its mammalian homologs Tristetraprolin (TTP) and ERF-2. I was able to identify two amino acids present within the MEX-5 RNA binding domain that are required for the differential RNA recognition observed between MEX-5 and TTP. MEX-3 on the other hand is a specific RNA binding protein, recognizing a bipartite element with flexible spacing between two four-nucleotide half-sites. I demonstrate that this element is required for MEX-3 dependent regulation in vivo. Previous studies only identify a small number of candidate regulatory targets of MEX-5 and MEX-3. The defined sequence specificity of both proteins is used to predict new putative targets that may be regulated by either protein. Collectively, this study examines the RNA binding properties of MEX-5 and MEX-3 to clarify their role as post-transcriptional regulators in nematode development.
26

Tyraminergic G Protein-Coupled Receptors Modulate Locomotion and Navigational Behavior In C. Elegans: A Dissertation

Donnelly, Jamie L. 04 August 2011 (has links)
An animal’s ability to navigate through its natural environment is critical to its survival. Navigation can be slow and methodical such as an annual migration, or purely reactive such as an escape response. How sensory input is translated into a fast behavioral output to execute goal oriented locomotion remains elusive. In this dissertation, I aimed to investigate escape response behavior in the nematode C. elegans. It has been shown that the biogenic amine tyramine is essential for the escape response. A tyramine-gated chloride channel, LGC-55, has been revealed to modulate suppression of head oscillations and reversal behavior in response to touch. Here, I discovered key modulators of the tyraminergic signaling pathway through forward and reverse genetic screens using exogenous tyramine drug plates. ser-2, a tyramine activated G protein-coupled receptor mutant, was partially resistant to the paralytic effects of exogenous tyramine on body movements, indicating a role in locomotion behavior. Further analysis revealed that ser-2 is asymmetrically expressed in the VD GABAergic motor neurons, and that SER-2 inhibits neurotransmitter release along the ventral nerve cord. Although overall locomotion was normal in ser-2 mutants, they failed to execute omega turns by fully contracting the ventral musculature. Omega turns allow the animal to reverse and completely change directions away from a predator during the escape response. Furthermore, my studies developed an assay to investigate instantaneous velocity changes during the escape response using machine based vision. We sought to determine how an animal accelerates in response to a mechanical stimulus, and subsequently decelerates to a basal locomotion rate. Mutant analysis using this assay revealed roles for both dopamine and tyramine signaling. During my doctoral work, I have further established the importance for tyramine in the nematode, as I have demonstrated two additional roles for tyramine in modulating escape response behavior in C. elegans.
27

Identification of Novel (<em>R</em>NAi <em>De</em>ficient) Genes in <em>C. elegans</em>: A Dissertation

Chen, Chun-Chieh G. 26 September 2006 (has links)
RNA interference or RNAi was first discovered as an experimental approach that induces potent sequence-specific gene silencing. Remarkably, subsequent studies on dissecting the molecular mechanism of the RNAi pathway reveal that RNAi is conserved in most eukaryotes. In addition, genes and mechanisms related to RNAi are employed to elicit the regulation of endogenous gene expression that controls a variety of important biological processes. To investigate the mechanism of RNAi in the nematode C. elegans, we performed genetic screens in search of RNAi deficient mutants (rde). Here I report the summary of the genetic screens in search of rde mutants as well as the identification of two novel genes required for the RNAi pathway, rde-3 and rde-8. In addition, we demonstrate that some of the rde genes, when mutated, render the animals developmentally defective, suggesting that these rde genes also function in developmental gene regulation. This work presents novel insights on the components of the RNAi pathway and the requirement of these components in the regulation of endogenous gene expression.
28

Functions of Argonaute Proteins in Self Versus Non-Self Recognition in the C. elegans Germline: A Dissertation

Seth, Meetu 18 August 2016 (has links)
Organisms employ sophisticated mechanisms to silence foreign nucleic acid, such as viruses and transposons. Evidence exists for pathways that sense copy number, unpaired DNA, or aberrant RNA (e.g., dsRNA), but the mechanisms that distinguish “self” from “non-self” are not well understood. Our studies on transgene silencing in C. elegans have uncovered an RNA surveillance system in which the PIWI protein, PRG-1, uses a vast repertoire of piRNAs to recognize foreign transcripts and to initiate epigenetic silencing. Partial base pairing by piRNAs is sufficient to guide PRG-1 targeting. PRG-1 in turn recruits RdRP to synthesize perfectly matching antisense siRNAs (22G-RNAs) that are loaded onto worm-specific Argonaute (WAGO) proteins. WAGOs collaborate with chromatin factors to maintain epigenetic silencing (RNAe). Since mismatches are allowed during piRNA targeting, piRNAs could—in theory— target any transcript expressed in the germline, but germline genes are not subject to silencing by RNAe. Moreover, some foreign sequences are expressed and appear to be adopted as “self.” How are “self” transcripts distinguished from foreign transcripts? We have found that another Argonaute, CSR-1, and its siRNAs—also synthesized by RdRP—protect endogenous genes from silencing by RNAe. We refer to this pathway as RNA-mediated gene activation (RNAa). Reducing CSR-1 or PRG-1 or increasing piRNA targeting can shift the balance towards expression or silencing, indicating that PRG-1 and CSR-1 compete for control over their targets. Thus worms have evolved a remarkable nucleic acids immunity mechanism in which opposing Argonaute pathways generate and maintain epigenetic memories of self and non-self nucleotide sequences.
29

Worming to Complete the Insulin/IGF-1 Signaling Cascade: A Dissertation

Padmanabhan, Srivatsan 17 April 2009 (has links)
The insulin/IGF-1 signaling (IIS) was initially identified in C. elegansto control a developmental phenotype called dauer. Subsequently, it was realized that lifespan was extended by mutations in this pathway and became an intense focus of study. The IIS pathway regulates growth, metabolism and longevity across phylogeny and plays important roles in human disease such as cancer and diabetes. Given the large number of cellular processes that this pathway controls, understanding the regulatory mechanisms that modulate insulin/IGF-1 signaling is of paramount importance. IIS signaling is a very well-studied kinase cascade but few phosphatases in the pathway are known. Identification of these phosphatases, especially those that counteract the activity of the kinases, would provide a better insight into the regulation of this critical pathway. Study of serine/threonine phosphatases is hampered by the lack of appropriate reagents. In Chapter II, we discuss the design and results of an RNAi screen of serine/threonine phosphatases performed in C. elegans using dauer formation as a phenotypic output. We identified several strong regulators of dauer formation and in Chapter III, proceed to characterize one of the top candidates of our screen, pptr-1. We show that pptr-1 regulates the IIS and thereby affects lifespan, development and metabolism in C .elegans. pptr-1gene encodes a protein with high homology to the mammalian B56 family of PP2A regulatory subunits. PP2A is a ubiquitously expressed phosphatase that is involved in multiple cellular processes whose specificity determined by its association with distinct regulatory subunits. Our studies using C. elegans provides mechanistic insight into how the PP2A regulatory subunit PPTR-1 specifically modulates AKT-1 activity by regulating its phosphorylation status in the context of a whole organism. Furthermore, we show that this mechanism of regulation is conserved in mammals.
30

Analysis of Polarity Signaling in Both Early Embryogenesis and Germline Development in C. Elegans: A Dissertation

Bei, Yanxia 18 January 2005 (has links)
In a 4-cell C. elegans embryo the ventral blastomere EMS requires polarity signaling from its posterior sister cell, P2. This signaling event enables EMS to orient its division spindle along the anterior-posterior (A/P) axis and to specify the endoderm fate of its posterior daughter cell, E. Wnt pathway components have been implicated in mediating P2/EMS signaling. However, no single mutants or various mutant combinations of the Wnt pathway components disrupt EMS polarity completely. Here we describe the identification of a pathway that is defined by two tyrosine kinase related proteins, SRC-1 and MES-1, which function in parallel with Wnt signaling to specify endoderm and to orient the division axis of EMS. We show that SRC-1, a C. elegans homolog of c-Src, functions downstream of MES-1 to specifically enhance phosphotyrosine accumulation at the P2/EMS junction in order to control cell fate and mitotic spindle orientation in both the P2 and EMS cells. In the canonical Wnt pathway, GSK-3 is conserved across species and acts as a negative regulator. However, in C. elegans we find that GSK-3 functions in a positive manner and in parallel with other components in the Wnt pathway to specify endoderm during embryogenesis. In addition, we also show that GSK-3 regulates C. elegans germline development, a function of GSK-3 that is not associated with Wnt signaling. It is required for the differentiation of somatic gonadal cells as well as the regulation of meiotic cell cycle in germ cells. Our results indicate that GSK-3 modulates multiple signaling pathways to regulate both embryogenesis and germline development in C. elegans.

Page generated in 0.0899 seconds