• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 49
  • 7
  • Tagged with
  • 108
  • 108
  • 108
  • 70
  • 59
  • 26
  • 22
  • 21
  • 21
  • 18
  • 16
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Vers des mécanismes génériques de communication et une meilleure maîtrise des affinités dans les grappes de calculateurs hiérarchiques

Goglin, Brice 15 April 2014 (has links) (PDF)
Avec l'utilisation de plus en plus répandue de la simulation numérique dans de nombreuses branches de l'industrie, le calcul haute performance devient essentiel à la société. Si les plates-formes de calcul parallèle de plus en plus puissantes continuent à être construites, leur utilisation devient cependant de plus en plus un casse-tête. En effet, leur complexité croît avec la multiplication des ressources de calcul et de stockage impliquées, leurs fonctionnalités hétérogènes, et leur répartition non-uniforme. De nouveaux outils logiciels sont nécessaires pour faciliter l'exploitation de ces plates-formes. Je présente tout d'abord mes travaux visant à rendre plus accessibles et portables les mécanismes de communication développés par les constructeurs de réseaux haute performance pour le calcul. J'ai appliqué ce principe d'une part aux réseaux traditionnels de type Ethernet, et d'autre part aux communications entre processus locaux, afin d'améliorer les performances du passage de messages (MPI) sans dépendre de technologies matérielles spécialisées. J'explique ensuite comment faciliter la gestion des calculateurs hiérarchiques modernes. Il s'agit, d'une part, de modéliser ces plates-formes en représentant l'organisation des ressources de manière suffisamment simple pour masquer les détails techniques du matériel, et suffisamment précise pour permettre aux algorithmes de prendre des décisions de placement ou d'ordonnancement ; d'autre part, je propose des outils améliorant la gestion des architectures modernes où l'accès à la mémoire et aux périphériques n'est plus uniforme. Cela permet d'améliorer les performances de bibliothèques de calcul parallèle en tenant compte de la localité.
102

Solveurs multifrontaux exploitant des blocs de rang faible : complexité, performance et parallélisme / Block low-rank multifrontal solvers : complexity, performance, and scalability

Mary, Théo 24 November 2017 (has links)
Nous nous intéressons à l'utilisation d'approximations de rang faible pour réduire le coût des solveurs creux directs multifrontaux. Parmi les différents formats matriciels qui ont été proposés pour exploiter la propriété de rang faible dans les solveurs multifrontaux, nous nous concentrons sur le format Block Low-Rank (BLR) dont la simplicité et la flexibilité permettent de l'utiliser facilement dans un solveur multifrontal algébrique et généraliste. Nous présentons différentes variantes de la factorisation BLR, selon comment les mises à jour de rang faible sont effectuées, et comment le pivotage numérique est géré. D'abord, nous étudions la complexité théorique du format BLR qui, contrairement à d'autres formats comme les formats hiérarchiques, était inconnue jusqu'à présent. Nous prouvons que la complexité théorique de la factorisation multifrontale BLR est asymptotiquement inférieure à celle du solveur de rang plein. Nous montrons ensuite comment les variantes BLR peuvent encore réduire cette complexité. Nous étayons nos bornes de complexité par une étude expérimentale. Après avoir montré que les solveurs multifrontaux BLR peuvent atteindre une faible complexité, nous nous intéressons au problème de la convertir en gains de performance réels sur les architectures modernes. Nous présentons d'abord une factorisation BLR multithreadée, et analysons sa performance dans des environnements multicœurs à mémoire partagée. Nous montrons que les variantes BLR sont cruciales pour exploiter efficacement les machines multicœurs en améliorant l'intensité arithmétique et la scalabilité de la factorisation. Nous considérons ensuite à la factorisation BLR sur des architectures à mémoire distribuée. Les algorithmes présentés dans cette thèse ont été implémentés dans le solveur MUMPS. Nous illustrons l'utilisation de notre approche dans trois applications industrielles provenant des géosciences et de la mécanique des structures. Nous comparons également notre solveur avec STRUMPACK, basé sur des approximations Hierarchically Semi-Separable. Nous concluons cette thèse en rapportant un résultat sur un problème de très grande taille (130 millions d'inconnues) qui illustre les futurs défis posés par le passage à l'échelle des solveurs multifrontaux BLR. / We investigate the use of low-rank approximations to reduce the cost of sparse direct multifrontal solvers. Among the different matrix representations that have been proposed to exploit the low-rank property within multifrontal solvers, we focus on the Block Low-Rank (BLR) format whose simplicity and flexibility make it easy to use in a general purpose, algebraic multifrontal solver. We present different variants of the BLR factorization, depending on how the low-rank updates are performed and on the constraints to handle numerical pivoting. We first investigate the theoretical complexity of the BLR format which, unlike other formats such as hierarchical ones, was previously unknown. We prove that the theoretical complexity of the BLR multifrontal factorization is asymptotically lower than that of the full-rank solver. We then show how the BLR variants can further reduce that complexity. We provide an experimental study with numerical results to support our complexity bounds. After proving that BLR multifrontal solvers can achieve a low complexity, we turn to the problem of translating that low complexity in actual performance gains on modern architectures. We first present a multithreaded BLR factorization, and analyze its performance in shared-memory multicore environments on a large set of real-life problems. We put forward several algorithmic properties of the BLR variants necessary to efficiently exploit multicore systems by improving the arithmetic intensity and the scalability of the BLR factorization. We then move on to the distributed-memory BLR factorization, for which additional challenges are identified and addressed. The algorithms presented throughout this thesis have been implemented within the MUMPS solver. We illustrate the use of our approach in three industrial applications coming from geosciences and structural mechanics. We also compare our solver with the STRUMPACK package, based on Hierarchically Semi-Separable approximations. We conclude this thesis by reporting results on a very large problem (130 millions of unknowns) which illustrates future challenges posed by BLR multifrontal solvers at scale.
103

Optimisations des solveurs linéaires creux hybrides basés sur une approche par complément de Schur et décomposition de domaine / Optimizations of hybrid sparse linear solvers relying on Schur complement and domain decomposition approaches

Casadei, Astrid 19 October 2015 (has links)
Dans cette thèse, nous nous intéressons à la résolution parallèle de grands systèmes linéaires creux. Nous nous focalisons plus particulièrement sur les solveurs linéaires creux hybrides directs itératifs tels que HIPS, MaPHyS, PDSLIN ou ShyLU, qui sont basés sur une décomposition de domaine et une approche « complément de Schur ». Bien que ces solveurs soient moins coûteux en temps et en mémoire que leurs homologues directs, ils ne sont néanmoins pas exempts de surcoûts. Dans une première partie, nous présentons les différentes méthodes de réduction de la consommation mémoire déjà existantes et en proposons une nouvelle qui n’impacte pas la robustesse numérique du précondionneur construit. Cette technique se base sur une atténuation du pic mémoire par un ordonnancement spécifique des tâches de calcul, d’allocation et de désallocation des blocs, notamment ceux se trouvant dans les parties « couplage » des domaines.Dans une seconde partie, nous nous intéressons à la question de l’équilibrage de la charge que pose la décomposition de domaine pour le calcul parallèle. Ce problème revient à partitionner le graphe d’adjacence de la matrice en autant de parties que de domaines désirés. Nous mettons en évidence le fait que pour avoir un équilibrage correct des temps de calcul lors des phases les plus coûteuses d’un solveur hybride tel que MaPHyS, il faut à la fois équilibrer les domaines en termes de nombre de noeuds et de taille d’interface locale. Jusqu’à aujourd’hui, les partitionneurs de graphes tels que Scotch et MeTiS ne s’intéressaient toutefois qu’au premier critère (la taille des domaines) dans le contexte de la renumérotation des matrices creuses. Nous proposons plusieurs variantes des algorithmes existants afin de prendre également en compte l’équilibrage des interfaces locales. Toutes nos modifications sont implémentées dans le partitionneur Scotch, et nous présentons des résultats sur de grands cas de tests industriels. / In this thesis, we focus on the parallel solving of large sparse linear systems. Our main interestis on direct-iterative hybrid solvers such as HIPS, MaPHyS, PDSLIN or ShyLU, whichrely on domain decomposition and Schur complement approaches. Althrough these solvers arenot as time and space consuming as direct methods, they still suffer from serious overheads. Ina first part, we thus present the existing techniques for reducing the memory consumption, andwe present a new method which does not impact the numerical robustness of the preconditioner.This technique reduces the memory peak by doing a special scheduling of computation, allocation,and freeing tasks in particular in the Schur coupling blocks of the matrix. In a second part,we focus on the load balancing of the domain decomposition in a parallel context. This problemconsists in partitioning the adjacency graph of the matrix in as many domains as desired. Wepoint out that a good load balancing for the most expensive steps of an hybrid solver such asMaPHyS relies on the balancing of both interior nodes and interface nodes of the domains.Through, until now, graph partitioners such as MeTiS or Scotch used to optimize only thefirst criteria (i.e., the balancing of interior nodes) in the context of sparse matrix ordering. Wepropose different variations of the existing algorithms to improve the balancing of interface nodesand interior nodes simultaneously. All our changes are implemented in the Scotch partitioner.We present our results on large collection of matrices coming from real industrial cases.
104

Improving message logging protocols towards extreme-scale HPC systems / Amélioration des protocoles de journalisation des messages vers des systèmes HPC extrême-échelle

Martsinkevich, Tatiana V. 22 September 2015 (has links)
Les machines pétascale qui existent aujourd'hui ont un temps moyen entre pannes de plusieurs heures. Il est prévu que dans les futurs systèmes ce temps diminuera. Pour cette raison, les applications qui fonctionneront sur ces systèmes doivent être capables de tolérer des défaillances fréquentes. Aujourd'hui, le moyen le plus commun de le faire est d'utiliser le mécanisme de retour arrière global où l'application fait des sauvegardes périodiques à partir d’un point de reprise. Si un processus s'arrête à cause d'une défaillance, tous les processus reviennent en arrière et se relancent à partir du dernier point de reprise. Cependant, cette solution deviendra infaisable à grande échelle en raison des coûts de l'énergie et de l'utilisation inefficace des ressources. Dans le contexte des applications MPI, les protocoles de journalisation des messages offrent un meilleur confinement des défaillances car ils ne demandent que le redémarrage du processus qui a échoué, ou parfois d’un groupe de processus limité. Par contre, les protocoles existants ont souvent un surcoût important en l’absence de défaillances qui empêchent leur utilisation à grande échelle. Ce surcoût provient de la nécessité de sauvegarder de façon fiable tous les événements non-déterministes afin de pouvoir correctement restaurer l'état du processus en cas de défaillance. Ensuite, comme les journaux de messages sont généralement stockés dans la mémoire volatile, la journalisation risque de nécessiter une large utilisation de la mémoire. Une autre tendance importante dans le domaine des HPC est le passage des applications MPI simples aux nouveaux modèles de programmation hybrides tels que MPI + threads ou MPI + tâches en réponse au nombre croissant de cœurs par noeud. Cela offre l’opportunité de gérer les défaillances au niveau du thread / de la tâche contrairement à l'approche conventionnelle qui traite les défaillances au niveau du processus. Par conséquent, le travail de cette thèse se compose de trois parties. Tout d'abord, nous présentons un protocole de journalisation hiérarchique pour atténuer une défaillance de processus. Le protocole s'appelle Scalable Pattern-Based Checkpointing et il exploite un nouveau modèle déterministe appelé channel-determinism ainsi qu’une nouvelle relation always-happens-before utilisée pour mettre partiellement en ordre les événements de l'application. Le protocole est évolutif, son surcoût pendant l'exécution sans défaillance est limité, il n'exige l'enregistrement d'aucun évènement et, enfin, il a une reprise entièrement distribuée. Deuxièmement, afin de résoudre le problème de la limitation de la mémoire sur les nœuds de calcul, nous proposons d'utiliser des ressources dédiées supplémentaires, appelées logger nodes. Tous les messages qui ne rentrent pas dans la mémoire du nœud de calcul sont envoyés aux logger nodes et sauvegardés dans leur mémoire. À travers de nos expériences nous montrons que cette approche est réalisable et, associée avec un protocole de journalisation hiérarchique comme le SPBC, les logger nodes peuvent être une solution ultime au problème de mémoire limitée sur les nœuds de calcul. Troisièmement, nous présentons un protocole de tolérance aux défaillances pour des applications hybrides qui adoptent le modèle de programmation MPI + tâches. Ce protocole s'utilise pour tolérer des erreurs détectées non corrigées qui se produisent lors de l'exécution d'une tâche. Normalement, une telle erreur provoque une exception du système ce qui provoque un arrêt brutal de l'application. Dans ce cas, l'application doit redémarrer à partir du dernier point de reprise. Nous combinons la sauvegarde des données de la tâche avec une journalisation des messages afin d’aider à la reprise de la tâche qui a subi une défaillance. Ainsi, nous évitons le redémarrage au niveau du processus, plus coûteux. Nous démontrons les avantages de ce protocole avec l'exemple des applications hybrides MPI + OmpSs. / Existing petascale machines have a Mean Time Between Failures (MTBF) in the order of several hours. It is predicted that in the future systems the MTBF will decrease. Therefore, applications that will run on these systems need to be able to tolerate frequent failures. Currently, the most common way to do this is to use global application checkpoint/restart scheme: if some process fails the whole application rolls back the its last checkpointed state and re-executes from that point. This solution will become infeasible at large scale, due to its energy costs and inefficient resource usage. Therefore fine-grained failure containment is a strongly required feature for the fault tolerance techniques that target large-scale executions. In the context of message passing MPI applications, message logging fault tolerance protocols provide good failure containment as they require restart of only one process or, in some cases, a bounded number of processes. However, existing logging protocols experience a number of issues which prevent their usage at large scale. In particular, they tend to have high failure-free overhead because they usually need to store reliably any nondeterministic events happening during the execution of a process in order to correctly restore its state in recovery. Next, as message logs are usually stored in the volatile memory, logging may incur large memory footprint, especially in communication-intensive applications. This is particularly important because the future exascale systems expect to have less memory available per core. Another important trend in HPC is switching from MPI-only applications to hybrid programming models like MPI+threads and MPI+tasks in response to the increasing number of cores per node. This gives opportunities for employing fault tolerance solutions that handle faults on the level of threads/tasks. Such approach has even better failure containment compared to message logging protocols which handle failures on the level of processes. Thus, the work in these dissertation consists of three parts. First, we present a hierarchical log-based fault tolerance solution, called Scalable Pattern-Based Checkpointing (SPBC) for mitigating process fail-stop failures. The protocol leverages a new deterministic model called channel-determinism and a new always-happens-before relation for partial ordering of events in the application. The protocol is scalable, has low overhead in failure-free execution and does not require logging any events, provides perfect failure containment and has a fully distributed recovery. Second, to address the memory limitation problem on compute nodes, we propose to use additional dedicated resources, or logger nodes. All the logs that do not fit in the memory of compute nodes are sent to the logger nodes and kept in their memory. In a series of experiments we show that not only this approach is feasible, but, combined with a hierarchical logging scheme like the SPBC, logger nodes can be an ultimate solution to the problem of memory limitation for logging protocols. Third, we present a log-based fault tolerance protocol for hybrid applications adopting MPI+tasks programming model. The protocol is used to tolerate detected uncorrected errors (DUEs) that happen during execution of a task. Normally, a DUE caused the system to raise an exception which lead to an application crash. Then, the application has to restart from a checkpoint. In the proposed solution, we combine task checkpointing with message logging in order to support task re-execution. Such task-level failure containment can be beneficial in large-scale executions because it avoids the more expensive process-level restart. We demonstrate the advantages of this protocol on the example of hybrid MPI+OmpSs applications.
105

A user-centered and autonomic multi-cloud architecture for high performance computing applications / Un utilisateur centré et multi-cloud architecture pour le calcul des applications de haute performance

Ferreira Leite, Alessandro 02 December 2014 (has links)
Le cloud computing a été considéré comme une option pour exécuter des applications de calcul haute performance. Bien que les plateformes traditionnelles de calcul haute performance telles que les grilles et les supercalculateurs offrent un environnement stable du point de vue des défaillances, des performances, et de la taille des ressources, le cloud computing offre des ressources à la demande, généralement avec des performances imprévisibles mais à des coûts financiers abordables. Pour surmonter les limites d’un cloud individuel, plusieurs clouds peuvent être combinés pour former une fédération de clouds, souvent avec des coûts supplémentaires légers pour les utilisateurs. Une fédération de clouds peut aider autant les fournisseurs que les utilisateurs à atteindre leurs objectifs tels la réduction du temps d’exécution, la minimisation des coûts, l’augmentation de la disponibilité, la réduction de la consommation d’énergie, pour ne citer que ceux-Là. Ainsi, la fédération de clouds peut être une solution élégante pour éviter le sur-Approvisionnement, réduisant ainsi les coûts d’exploitation en situation de charge moyenne, et en supprimant des ressources qui, autrement, resteraient inutilisées et gaspilleraient ainsi de énergie. Cependant, la fédération de clouds élargit la gamme des ressources disponibles. En conséquence, pour les utilisateurs, des compétences en cloud computing ou en administration système sont nécessaires, ainsi qu’un temps d’apprentissage considérable pour maîtrises les options disponibles. Dans ce contexte, certaines questions se posent: (a) Quelle ressource du cloud est appropriée pour une application donnée? (b) Comment les utilisateurs peuvent-Ils exécuter leurs applications HPC avec un rendement acceptable et des coûts financiers abordables, sans avoir à reconfigurer les applications pour répondre aux normes et contraintes du cloud ? (c) Comment les non-Spécialistes du cloud peuvent-Ils maximiser l’usage des caractéristiques du cloud, sans être liés au fournisseur du cloud ? et (d) Comment les fournisseurs de cloud peuvent-Ils exploiter la fédération pour réduire la consommation électrique, tout en étant en mesure de fournir un service garantissant les normes de qualité préétablies ? À partir de ces questions, la présente thèse propose une solution de consolidation d’applications pour la fédération de clouds qui garantit le respect des normes de qualité de service. On utilise un système multi-Agents pour négocier la migration des machines virtuelles entre les clouds. En nous basant sur la fédération de clouds, nous avons développé et évalué une approche pour exécuter une énorme application de bioinformatique à coût zéro. En outre, nous avons pu réduire le temps d’exécution de 22,55% par rapport à la meilleure exécution dans un cloud individuel. Cette thèse présente aussi une architecture de cloud baptisée « Excalibur » qui permet l’adaptation automatique des applications standards pour le cloud. Dans l’exécution d’une chaîne de traitements de la génomique, Excalibur a pu parfaitement mettre à l’échelle les applications sur jusqu’à 11 machines virtuelles, ce qui a réduit le temps d’exécution de 63% et le coût de 84% par rapport à la configuration de l’utilisateur. Enfin, cette thèse présente un processus d’ingénierie des lignes de produits (PLE) pour gérer la variabilité de l’infrastructure à la demande du cloud, et une architecture multi-Cloud autonome qui utilise ce processus pour configurer et faire face aux défaillances de manière indépendante. Le processus PLE utilise le modèle étendu de fonction avec des attributs pour décrire les ressources et les sélectionner en fonction des objectifs de l’utilisateur. Les expériences réalisées avec deux fournisseurs de cloud différents montrent qu’en utilisant le modèle proposé, les utilisateurs peuvent exécuter leurs applications dans un environnement de clouds fédérés, sans avoir besoin de connaître les variabilités et contraintes du cloud. / Cloud computing has been seen as an option to execute high performance computing (HPC) applications. While traditional HPC platforms such as grid and supercomputers offer a stable environment in terms of failures, performance, and number of resources, cloud computing offers on-Demand resources generally with unpredictable performance at low financial cost. Furthermore, in cloud environment, failures are part of its normal operation. To overcome the limits of a single cloud, clouds can be combined, forming a cloud federation often with minimal additional costs for the users. A cloud federation can help both cloud providers and cloud users to achieve their goals such as to reduce the execution time, to achieve minimum cost, to increase availability, to reduce power consumption, among others. Hence, cloud federation can be an elegant solution to avoid over provisioning, thus reducing the operational costs in an average load situation, and removing resources that would otherwise remain idle and wasting power consumption, for instance. However, cloud federation increases the range of resources available for the users. As a result, cloud or system administration skills may be demanded from the users, as well as a considerable time to learn about the available options. In this context, some questions arise such as: (a) which cloud resource is appropriate for a given application? (b) how can the users execute their HPC applications with acceptable performance and financial costs, without needing to re-Engineer the applications to fit clouds' constraints? (c) how can non-Cloud specialists maximize the features of the clouds, without being tied to a cloud provider? and (d) how can the cloud providers use the federation to reduce power consumption of the clouds, while still being able to give service-Level agreement (SLA) guarantees to the users? Motivated by these questions, this thesis presents a SLA-Aware application consolidation solution for cloud federation. Using a multi-Agent system (MAS) to negotiate virtual machine (VM) migrations between the clouds, simulation results show that our approach could reduce up to 46% of the power consumption, while trying to meet performance requirements. Using the federation, we developed and evaluated an approach to execute a huge bioinformatics application at zero-Cost. Moreover, we could decrease the execution time in 22.55% over the best single cloud execution. In addition, this thesis presents a cloud architecture called Excalibur to auto-Scale cloud-Unaware application. Executing a genomics workflow, Excalibur could seamlessly scale the applications up to 11 virtual machines, reducing the execution time by 63% and the cost by 84% when compared to a user's configuration. Finally, this thesis presents a product line engineering (PLE) process to handle the variabilities of infrastructure-As-A-Service (IaaS) clouds, and an autonomic multi-Cloud architecture that uses this process to configure and to deal with failures autonomously. The PLE process uses extended feature model (EFM) with attributes to describe the resources and to select them based on users' objectives. Experiments realized with two different cloud providers show that using the proposed model, the users could execute their application in a cloud federation environment, without needing to know the variabilities and constraints of the clouds.
106

A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors / Un solveur parallèle itératif pour les grands systèmes linéaires creux, amélioré par la randomisation et l'utilisation des accélérateurs GPU, et sa résilience aux fautes logicielles

Jamal, Aygul 28 September 2017 (has links)
Dans cette thèse de doctorat, nous abordons trois défis auxquels sont confrontés les solveurs d'algèbres linéaires dans la perspective des futurs systèmes exascale: accélérer la convergence en utilisant des techniques innovantes au niveau algorithmique, en profitant des accélérateurs GPU (Graphics Processing Units) pour améliorer le calcul sur plusieurs systèmes, en évaluant l'impact des erreurs due à l'augmentation du parallélisme dans les superordinateurs. Nous nous intéressons à l'étude des méthodes permettant d'accélérer la convergence et le temps d'exécution des solveurs itératifs pour les grands systèmes linéaires creux. Le solveur plus spécifiquement considéré dans ce travail est le “parallel Algebraic Recursive Multilevel Solver (pARMS)” qui est un soldeur parallèle sur mémoire distribuée basé sur les méthodes de sous-espace de Krylov.Tout d'abord, nous proposons d'intégrer une technique de randomisation appelée “Random Butterfly Transformations (RBT)” qui a été proposée avec succès pour éliminer le coût du pivotage dans la résolution des systèmes linéaires denses. Notre objectif est d'appliquer cette technique dans le préconditionneur ARMS de pARMS pour résoudre plus efficacement le dernier système Complément de Schur dans l'application du processus à multi-niveaux récursif. En raison de l'importance considérable du dernier Complément de Schur pour certains problèmes de test, nous proposons également d'utiliser une variante creux de RBT suivie d'un solveur direct creux (SuperLU). Les résultats expérimentaux sur certaines matrices de la collection de Davis montrent une amélioration de la convergence et de la précision par rapport aux implémentations existantes.Ensuite, nous illustrons comment une approche non intrusive peut être appliquée pour implémenter des calculs GPU dans le solveur pARMS, plus particulièrement pour la phase de préconditionnement locale qui représente une partie importante du temps pour la résolution. Nous comparons les solveurs purement CPU avec les solveurs hybrides CPU / GPU sur plusieurs problèmes de test issus d'applications physiques. Les résultats de performance du solveur hybride CPU / GPU utilisant le préconditionnement ARMS combiné avec RBT, ou le préconditionnement ILU(0), montrent un gain de performance jusqu'à 30% sur les problèmes de test considérés dans nos expériences.Enfin, nous étudions l'effet des défaillances logicielles variable sur la convergence de la méthode itérative flexible GMRES (FGMRES) qui est couramment utilisée pour résoudre le système préconditionné dans pARMS. Le problème ciblé dans nos expériences est un problème elliptique PDE sur une grille régulière. Nous considérons deux types de préconditionneurs: une factorisation LU incomplète à double seuil (ILUT) et le préconditionneur ARMS combiné avec randomisation RBT. Nous considérons deux modèle de fautes logicielles différentes où nous perturbons la multiplication du vecteur matriciel et la phase de préconditionnement, et nous comparons leur impact potentiel sur la convergence. / In this PhD thesis, we address three challenges faced by linear algebra solvers in the perspective of future exascale systems: accelerating convergence using innovative techniques at the algorithm level, taking advantage of GPU (Graphics Processing Units) accelerators to enhance the performance of computations on hybrid CPU/GPU systems, evaluating the impact of errors in the context of an increasing level of parallelism in supercomputers. We are interested in studying methods that enable us to accelerate convergence and execution time of iterative solvers for large sparse linear systems. The solver specifically considered in this work is the parallel Algebraic Recursive Multilevel Solver (pARMS), which is a distributed-memory parallel solver based on Krylov subspace methods.First we integrate a randomization technique referred to as Random Butterfly Transformations (RBT) that has been successfully applied to remove the cost of pivoting in the solution of dense linear systems. Our objective is to apply this method in the ARMS preconditioner to solve more efficiently the last Schur complement system in the application of the recursive multilevel process in pARMS. The experimental results show an improvement of the convergence and the accuracy. Due to memory concerns for some test problems, we also propose to use a sparse variant of RBT followed by a sparse direct solver (SuperLU), resulting in an improvement of the execution time.Then we explain how a non intrusive approach can be applied to implement GPU computing into the pARMS solver, more especially for the local preconditioning phase that represents a significant part of the time to compute the solution. We compare the CPU-only and hybrid CPU/GPU variant of the solver on several test problems coming from physical applications. The performance results of the hybrid CPU/GPU solver using the ARMS preconditioning combined with RBT, or the ILU(0) preconditioning, show a performance gain of up to 30% on the test problems considered in our experiments.Finally we study the effect of soft fault errors on the convergence of the commonly used flexible GMRES (FGMRES) algorithm which is also used to solve the preconditioned system in pARMS. The test problem in our experiments is an elliptical PDE problem on a regular grid. We consider two types of preconditioners: an incomplete LU factorization with dual threshold (ILUT), and the ARMS preconditioner combined with RBT randomization. We consider two soft fault error modeling approaches where we perturb the matrix-vector multiplication and the application of the preconditioner, and we compare their potential impact on the convergence of the solver.
107

Contribution à la modélisation eulérienne unifiée de l’injection : de la zone dense au spray polydispersé / Contribution to a unified Eulerian modeling of fuel injection : from dense liquid to polydisperse spray

Essadki, Mohamed 13 February 2018 (has links)
L’injection directe à haute pression du carburant dans les moteurs à combustion interne permet une atomisation compacte et efficace. Dans ce contexte, la simulation numérique de l’injection est devenue un outil fondamental pour la conception industrielle. Cependant,l’écoulement du carburant liquide dans une chambre occupée initialement par l’air est un écoulement diphasique très complexe ; elle implique une très large gamme d’échelles. L’objectif de cette thèse est d’apporter de nouveaux éléments de modélisation et de simulation afin d’envisager une simulation prédictive de ce type d’écoulement avec un coût de calcul abordable dans un contexte industriel. En effet, au vu du coût de calcul prohibitif de la simulation directe de l’ensemble des échelles spatiales et temporelles, nous devons concevoir une gamme de modèles d’ordre réduit prédictifs. En outre, des méthodes numériques robustes, précises et adaptées au calcul de haute performance sont primordiales pour des simulations complexes.Cette thèse est dédiée au développement d’un modèle d’ordre réduit Eulérien capable de capter tant la polydispersiond’un brouillard de goutte dans la zone dispersée,que la dynamique de l’interface dans le régime de phases séparées. En s’appuyant sur une extension des méthodes de moments d’ordre élevé à des moments fractionnaires qui représentent des quantités géométriques de l’interface, et sur l’utilisation de variables géométrique sen sous-échelle dans la zone où l’interface gaz-liquide ne peut plus être complètement résolue, nous proposons une approche unifiée où un ensemble de variables géométriques sont transportées et valides dans les deux régimes d’écoulement [...]. / Direct fuel injection systems are widely used in combustionengines to better atomize and mix the fuel withthe air. The design of new and efficient injectors needsto be assisted with predictive simulations. The fuel injectionprocess involves different two-phase flow regimesthat imply a large range of scales. In the context of thisPhD, two areas of the flow are formally distinguished:the dense liquid core called separated phases and thepolydisperse spray obtained after the atomization. Themain challenge consists in simulating the combinationof these regimes with an acceptable computational cost.Direct Numerical Simulations, where all the scales needto be solved, lead to a high computational cost for industrialapplications. Therefore, modeling is necessaryto develop a reduced order model that can describe allregimes of the flow. This also requires major breakthroughin terms of numerical methods and High PerformanceComputing (HPC).This PhD investigates Eulerian reduced order models todescribe the polydispersion in the disperse phase andthe gas-liquid interface in the separated phases. First,we rely on the moment method to model the polydispersionin the downstream region of the flow. Then,we propose a new description of the interface by usinggeometrical variables. These variables can provide complementaryinformation on the interface geometry withrespect to a two-fluid model to simulate the primary atomization.The major contribution of this work consistsin using a unified set of variables to describe the tworegions: disperse and separated phases. In the case ofspherical droplets, we show that this new geometricalapproach can degenerate to a moment model similar toEulerian Multi-Size Model (EMSM). However, the newmodel involves fractional moments, which require somespecific treatments. This model has the same capacityto describe the polydispersion as the previous Eulerianmoment models: the EMSM and the multi-fluid model.But, it also enables a geometrical description of the interface...].
108

Méthodes d'ordre élevé et méthodes de décomposition de domaine efficaces pour les équations de Maxwell en régime harmonique / Efficient high order and domain decomposition methods for the time-harmonic Maxwell's equations

Bonazzoli, Marcella 11 September 2017 (has links)
Les équations de Maxwell en régime harmonique comportent plusieurs difficultés lorsque la fréquence est élevée. On peut notamment citer le fait que leur formulation variationnelle n’est pas définie positive et l’effet de pollution qui oblige à utiliser des maillages très fins, ce qui rend problématique la construction de solveurs itératifs. Nous proposons une stratégie de solution précise et rapide, qui associe une discrétisation par des éléments finis d’ordre élevé à des préconditionneurs de type décomposition de domaine. La conception, l’implémentation et l’analyse des deux méthodes sont assez difficiles pour les équations de Maxwell. Les éléments finis adaptés à l’approximation du champ électrique sont les éléments finis H(rot)-conformes ou d’arête. Ici nous revisitons les degrés de liberté classiques définis par Nédélec, afin d’obtenir une expression plus pratique par rapport aux fonctions de base d’ordre élevé choisies. De plus, nous proposons une technique pour restaurer la dualité entre les fonctions de base et les degrés de liberté. Nous décrivons explicitement une stratégie d’implémentation qui a été appliquée dans le langage open source FreeFem++. Ensuite, nous nous concentrons sur les techniques de préconditionnement du système linéaire résultant de la discrétisation par éléments finis. Nous commençons par la validation numérique d’un préconditionneur à un niveau, de type Schwarz avec recouvrement, avec des conditions de transmission d’impédance entre les sous-domaines. Enfin, nous étudions comment des préconditionneurs à deux niveaux, analysés récemment pour l’équation de Helmholtz, se comportent pour les équations de Maxwell, des points de vue théorique et numérique. Nous appliquons ces méthodes à un problème à grande échelle qui découle de la modélisation d’un système d’imagerie micro-onde, pour la détection et le suivi des accidents vasculaires cérébraux. La précision et la vitesse de calcul sont essentielles dans cette application. / The time-harmonic Maxwell’s equations present several difficulties when the frequency is large, such as the sign-indefiniteness of the variational formulation, the pollution effect and the problematic construction of iterative solvers. We propose a precise and efficient solution strategy that couples high order finite element (FE) discretizations with domain decomposition (DD) preconditioners. High order FE methods make it possible for a given precision to reduce significantly the number of unknowns of the linear system to be solved. DD methods are then used as preconditioners for the iterative solver: the problem defined on the global domain is decomposed into smaller problems on subdomains, which can be solved concurrently and using robust direct solvers. The design, implementation and analysis of both these methods are particularly challenging for Maxwell’s equations. FEs suited for the approximation of the electric field are the curl-conforming or edge finite elements. Here, we revisit the classical degrees of freedom (dofs) defined by Nédélec to obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover, we propose a general technique to restore duality between dofs and basis functions. We explicitly describe an implementation strategy, which we embedded in the open source language FreeFem++. Then we focus on the preconditioning of the linear system, starting with a numerical validation of a one-level overlapping Schwarz preconditioner, with impedance transmission conditions between subdomains. Finally, we investigate how two-level preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both from the theoretical and numerical points of view. We apply these methods to the large scale problem arising from the modeling of a microwave imaging system, for the detection and monitoring of brain strokes. In this application accuracy and computing speed are indeed of paramount importance.

Page generated in 0.1063 seconds