Spelling suggestions: "subject:"cancer -- chemotherapy."" "subject:"cancer -- hemotherapy.""
141 |
Anti-tumor effects and mechanisms of pegylated human recombinant arginase (PEG-BCT-100) in pancreatic cancer cells: 一種聚乙二醇重組人精氨酸酶在胰腺癌細胞中的抗癌效應及機制研究 / 一種聚乙二醇重組人精氨酸酶在胰腺癌細胞中的抗癌效應及機制研究 / CUHK electronic theses & dissertations collection / Anti-tumor effects and mechanisms of pegylated human recombinant arginase (PEG-BCT-100) in pancreatic cancer cells: Yi zhong ju yi er chun zhong zu ren jing an suan mei zai yi xian ai xi bao zhong de kang ai xiao ying ji ji zhi yan jiu / Yi zhong ju yi er chun zhong zu ren jing an suan mei zai yi xian ai xi bao zhong de kang ai xiao ying ji ji zhi yan jiuJanuary 2015 (has links)
Pancreatic cancer is one of the most devastating human cancers with the lowest survival rate among 24 commonly diagnosed cancers. It is the seventh and the sixth leading cause of cancer-related deaths in the world and Hong Kong respectively. The current pancreatic cancer treatment options, have limited efficacy and undesirable side effects. Because of the high mortality rate and unsatisfactory treatment outcome, it is necessary to develop new strategies for pancreatic cancer therapy. / In human, an abundant arginine reserve is known to be crucial for tumor cell proliferation. Arginine is a semi-essential amino acid because most of the somatic cells can re-synthesize it from other metabolites like citrulline in urea cycle. However, arginine auxotrophy is observed in certain tumors, such as hepatocarcinoma, melanoma and sarcoma, where restriction or depletion of arginine will lead to tumor death. Further studies have found that deficiency in either argininosuccinate synthetase 1 (ASS1) or ornithine transcarbamylase (OTC) expression contributes to arginine auxotrophy in these tumors. These findings implicated the potential of using arginine deprivation as a novel pancreatic cancer treatment strategy. / PEG-BCT-100 is a pegylated recombinant human arginase that metabolizes arginine into urea and ornithine. This study examined the preclinical anti-tumor efficacy of PEG-BCT-100 and the underlying mechanism in pancreatic cancer. Six pancreatic cancer cell lines AsPC-1, BxPC-3, CFPAC-1, Capan-2, MIA PaCa-2 and Panc10.05 were used as in vitro cell model. Cell growth was either completely stopped or dramatically reduced in arginine-free medium, suggesting pancreatic cancer cells were arginine auxotrophic. The protein and mRNA expression levels of the ASS1, OTC and argininosuccinate lyase (ASL), which are enzymes involved in arginine, were studied. The results showed that ASL was highly expressed in all cell lines, suggesting it is not an essential regulator in arginine auxotrophy in pancreatic cancer. On the other hand, ASS1 was only detected in BxPC-3 and CFPAC-1, while OTC was undetectable in all cell lines in both mRNA and protein levels. The effect of PEG-BCT-100 was illustrated via cell cycle progression, cell proliferation and viability. Single drug effect combining PEG-BCT-100 with other anti-tumor drugs, such as 5-FU and gemcitabine, was further explored. Synergistic effect of PEG-BCT-100 and gemcitabine under combination of PEG-BCT-100 and gemcitabine was observed in CFPAC-1 and MIA PaCa-2. Overexpression of OTC and ASS1 decreased the sensitivity of towards PEG-BCT-100 significantly. Taken together, OTC deficiency is a potential indicative marker for the sensitivity of arginine depletion treatment in pancreatic cancer. / 胰腺癌是最具毀滅性的人類癌症之一,在二十四種常見的癌症中,它有着最低的存活率。儘管不在發病率最高的十種癌症中,胰腺癌仍舊是世界第七大致死癌症,以及香港第六大致死癌症。手術治療,放射治療,以及化學藥物治療是現今常用的胰腺癌治療手段,但是這些療法不是限制繁多,就是收效甚微,並常常伴有強烈的副作用。由於胰腺癌具有很高的致死率以及缺乏有效的治療方法,所以新的治療策略亟待開發。 / 於人類而言,精氨酸是一種半必需氨基酸,因爲它可以通過尿素循環中的其他代謝產物,如鳥氨酸以及瓜氨酸,重新合成。然而,精氨酸缺陷出現在多種腫瘤中,像肝癌,黑色素瘤,以及血癌。限制或者減少精氨酸的供應會導致這些腫瘤死亡。除此之外,腫瘤細胞的快速生長也依賴於充足的精氨酸。進一步的研究表明,在這些腫瘤中,精氨琥珀酸合成酶1(ASS1)或者鳥氨酸氨甲醯基轉移酶(OTC)的任意一個缺乏都會導致精氨酸缺陷。本文將探討將剝奪精氨酸作爲一種新策略來治療胰腺癌的可行性。 / PEG-BCT-100又名金氨素,是一種聚乙二醇化重組人精氨酸酶,它可以催化精氨酸分解爲尿素和鳥氨酸。我們研究了PEG-BCT-100在胰腺癌細胞中的抗癌效果以及探討了與其相關的作用機理。在我們的研究中,AsPC-1, BxPC-3, CFPAC-1, Capan-2, MIA PaCa-2以及Panc10.05這六個細胞株用作體外的細胞模型。爲了評估PEG-BCT-100治療胰腺癌的可行性,我們首先調查了精氨酸對胰腺癌細胞的重要性。通過將這些胰腺癌細胞培養在有精氨酸供應和沒有精氨酸供應的完全培養基中,我們發現剝奪精氨酸能完全停止或者極大地減少了胰腺癌細胞的生長。這說明了這些胰腺癌細胞也都是精氨酸營養缺陷型的細胞。通過蛋白印跡和實時定量聚合酶鏈式反應實驗,我們進一步研究了精氨酸代謝相關基因在這些胰腺癌細胞中的表達水平。結果表明,精氨琥珀酸裂解酶(ASL)在全部的六條細胞系中都有被檢測到。ASS1只出現在BxPC-3和CFPAC-1中。然而在全部的細胞中,無論是蛋白質水平還是mRNA水平,OTC都沒有被檢測到。緊接着,我們研究了PEG-BCT-100在胰腺癌細胞活力,細胞增殖,細胞週期以及細胞凋亡等方面的影響。結果表明,PEG-BCT-100可以從多個方面抑制胰腺癌細胞。我們還嘗試探索了PEG-BCT-100與其他胰腺癌治療藥物在胰腺癌細胞中的聯合使用效果。然後發現PEG-BCT-100與吉西他滨(gemcitabine)聯合使用具有協同效果。最後,我們構建了四種不同表達類型的MIA PaCa-2細胞模型:(ASS1-/OTC-), (ASS1-/OTC+), (ASS1+/OTC-)以及(ASS1+/OTC+)。接着我們測試了PEG-BCT-100在這些細胞模型中的效果。結果表明,同時在MIA PaCa-2細胞中表達ASS1和OTC可以明顯地提高其對PEG-BCT-100的抗性,單表達其中一個基因對PEG-BCT-100的抗性也有些許提高,但效果不如雙表達明顯。 / 總而言之,對於胰腺癌細胞而言,精氨酸是必不可少的。PEG-BCT-100有很明顯的胰腺癌效果。在胰腺癌中,OTC的表達情況可以作爲預估PEG-BCT-100治療效果的重要生物標誌。 / Deng, Haohao. / Thesis M.Phil. Chinese University of Hong Kong 2015. / Includes bibliographical references (leaves 111-117). / Abstracts also in Chinese. / Title from PDF title page (viewed on 14, October, 2016). / Deng, Haohao. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
|
142 |
Histone deacetylase inhibitors are effective therapeutic agents in nasopharyngeal carcinoma cells.January 2006 (has links)
Wong Yue Hang Albert. / Thesis submitted in: December 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 108-119). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.v / List of Figures --- p.x / List of Tables --- p.xi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Literature Review --- p.4 / Chapter 2.1 --- Nasopharyngeal Carcinoma (NPC) --- p.4 / Chapter 2.1.1 --- Anatomy of Nasopharynx --- p.4 / Chapter 2.1.2 --- Histopathology of Nasopharyngeal Carcinoma --- p.5 / Chapter 2.1.3 --- Epidemiology and Etiology of Nasopharyngeal Carcinoma --- p.5 / Chapter 2.1.3.1 --- Endemic Regions of Nasopharyngeal Carcinoma --- p.5 / Chapter 2.1.3.2 --- Gender and Age Bias --- p.6 / Chapter 2.1.3.3 --- Nasopharyngeal Carcinoma in Hong Kong --- p.6 / Chapter 2.1.3.4 --- Environmental Factors and Diet --- p.7 / Chapter 2.1.3.5 --- HLA Haplotypes and Nasopharyngeal Carcinoma --- p.9 / Chapter 2.1.4 --- Epstein-Barr Virus (EBV) and Nasopharyngeal Carcinoma --- p.10 / Chapter 2.1.4.1 --- EBV and Human Cacners --- p.10 / Chapter 2.1.4.2 --- EBV Infection --- p.10 / Chapter 2.1.4.3 --- "Latent, Clonal EBV Infection" --- p.11 / Chapter 2.1.4.4 --- EBV Latency Form --- p.11 / Chapter 2.1.4.5 --- Reactivation of EBV --- p.12 / Chapter 2.1.5 --- Molecular Pathogenesis of Nasopharyngeal Carcinoma --- p.13 / Chapter 2.1.5.1 --- Genetic Changes --- p.13 / Chapter 2.1.5.2 --- Epigenetic Changes --- p.13 / Chapter 2.1.6 --- Therapy of Nasopharyngeal Carcinoma and its Deficiency --- p.14 / Chapter 2.1.6.1 --- Radiotherapy --- p.14 / Chapter 2.1.6.2 --- Concurrent Chemoradiotherapy --- p.16 / Chapter 2.1.6.3 --- Adjuvant and Neo-adjuvant Chemotherapy --- p.17 / Chapter 2.1.6.4 --- Chemotherapy in Metastatic Nasopharyngeal Carcinoma --- p.18 / Chapter 2.1.6.5 --- Novel Therapeutic Agents and Approach --- p.19 / Chapter 2.2 --- Histone Modification and Cancer --- p.20 / Chapter 2.2.1 --- Histone Modification and Transcription Regulation --- p.20 / Chapter 2.2.2 --- Carcinogenic Effect of Aberrant HAT and HDAC Activities --- p.21 / Chapter 2.2.3 --- Structural Classes of HDAC Inhibitors --- p.24 / Chapter 2.2.4 --- Anti-Cancer Mechanisms of HDAC Inhibitors --- p.25 / Chapter 2.3 --- Suberoylanilide Hydroxamic Acid (SAHA) --- p.27 / Chapter 2.3.1 --- Anti-tumor Effect of SAHA in Various Cancer Cell Lines --- p.27 / Chapter 2.3.2 --- SAHA Mediated Non-apoptotic Programmed Cell Death --- p.29 / Chapter 2.3.3 --- Anti-tumor and Preventive Effect of SAHA in Animal Model --- p.29 / Chapter 2.3.4 --- Clinical Trials of SAHA --- p.30 / Chapter 2.4 --- FK228 (Depsipeptide or FR901228) --- p.31 / Chapter 2.4.1 --- Anti-malignancy mechanism of FK228 --- p.31 / Chapter 2.4.2 --- Anti-angiogenesis --- p.32 / Chapter 2.4.3 --- Drug Resistance and FK228 --- p.33 / Chapter 2.4.4 --- Studies of FK228 on Animal Models --- p.33 / Chapter 2.4.5 --- Clinical Trials --- p.34 / Chapter 2.5 --- Histone Modification and Nasopharyngeal Carcinoma --- p.34 / Chapter Chapter 3 --- Materials and Methods --- p.36 / Chapter 3.1 --- Cell Lines --- p.36 / Chapter 3.2 --- EBER ish Hybridization (EBER ISH) --- p.37 / Chapter 3.3 --- HDAC Inhibitors --- p.38 / Chapter 3.4 --- Cellular Sensitivity of NPC Cell Lines to HDAC Inhibitors --- p.38 / Chapter 3.4.1 --- Drug Treatment --- p.38 / Chapter 3.4.2 --- Determining Relative Amount of Survival Cells (WST-1 Assay) --- p.39 / Chapter 3.5 --- Flow Cytometry Analysis --- p.40 / Chapter 3.5.1 --- Collecting Cells and Fixation --- p.40 / Chapter 3.5.2 --- Staining --- p.41 / Chapter 3.5.3 --- Flow Cytometry Analysis --- p.41 / Chapter 3.6 --- Protein Extraction --- p.41 / Chapter 3.6.1 --- Harvesting Samples --- p.41 / Chapter 3.6.2 --- Protein Extraction --- p.42 / Chapter 3.6.3 --- Protein Quantification --- p.42 / Chapter 3.7 --- Western Blotting --- p.43 / Chapter 3.7.1 --- SDS-Polyarcylamide Gel Electrophoresis (PAGE) (SDS-PAGE) --- p.43 / Chapter 3.7.2 --- Wet Transfer of Proteins --- p.43 / Chapter 3.7.3 --- Immunoblotting --- p.44 / Chapter 3.7.4 --- Signal Detection --- p.44 / Chapter 3.8 --- CodeLin´kёØ Oligonucleotide Microarray --- p.45 / Chapter 3.8.1 --- HDAC Inhibitor Treatment --- p.45 / Chapter 3.8.2 --- RNA Extraction --- p.45 / Chapter 3.8.3 --- Quality and Quantity Assessment of Total RNA Extracted --- p.46 / Chapter 3.8.4 --- CodeLinkIM Expression Bioarray System --- p.46 / Chapter 3.8.5 --- Data Analysis --- p.48 / Chapter 3.9 --- Real-time Reverse Transcription PCR (Real-time RT-PCR) --- p.48 / Chapter Chapter 4 --- Results --- p.50 / Chapter 4.1 --- Presence of EBV --- p.50 / Chapter 4.2 --- Anti-prolirative Effect of HDAC Inhibitors --- p.52 / Chapter 4.3 --- Histone Acetylation --- p.56 / Chapter 4.4 --- Induction of p21 Expression in NPC Cell Lines --- p.58 / Chapter 4.5 --- HDAC Inhibitors Induced Cell Cycle Arrest and Polyploidy Formation --- p.60 / Chapter 4.5.1 --- Trichostatin A Induced G2/M Arrest --- p.60 / Chapter 4.5.2 --- Suberoylanilide Hydroxamic Acid Induced G1 Arrest --- p.62 / Chapter 4.5.3 --- FK228 Mediated G2/M Arrest --- p.64 / Chapter 4.6 --- HDAC Inhibitors Altered the Expression of Cell Cycle Regulatory Proteins --- p.66 / Chapter 4.6.1 --- TSA Down-regulated Cyclin A and B --- p.66 / Chapter 4.6.2 --- Suppressed Expression of Cyclin D1 and B by SAHA --- p.69 / Chapter 4.6.3 --- Effect of FK228 on Expression of Different Cyclins in NPC Cell Lines --- p.71 / Chapter 4.7 --- Effect of HDAC Inhibitors on EBV Proteins --- p.73 / Chapter 4.8 --- HDAC Inhibitors Modulated Gene Expression Profile --- p.76 / Chapter 4.8.1 --- SAHA and FK228-Induced Gene Expression Profile --- p.76 / Chapter 4.8.2 --- Validation of Expression Profile of Selected Genes by Real-time RT-PCR --- p.83 / Chapter Chapter 5 --- Discussion --- p.87 / Chapter 5.1 --- Anti-proliferative Effect of SAHA and FK228 on NPC Cell Lines --- p.88 / Chapter 5.2 --- Resistance of SAHA or FK228 in NPC --- p.93 / Chapter 5.3 --- Growth Inhibitory Mechanism of SAHA and FK228 in NPC Cells --- p.94 / Chapter 5.4 --- Induction of Polyploidy Cells in NPC Cell Lines --- p.98 / Chapter 5.5 --- Does EBV play a Role in HDAC Inhibiotrs Induced Growth Arrest in NPC Cell Lines? --- p.99 / Chapter 5.6 --- Transcriptional Signature of SAHA and FK228 in NPC Cell Lines --- p.100 / Chapter 5.7 --- Combining SAHA or FK228 with other Anti-tumor Agents --- p.104 / Chapter 5.8 --- Future Prospectus --- p.105 / Chapter Chapter 6 --- Summary --- p.106 / References --- p.108 / Appendix 1 --- p.120 / Appendix 2 --- p.121
|
143 |
Neoadjuvant Chemotherapy Monitoring of Breast Cancer Patients with Diffuse Optical Tomographic ImagingGunther, Jacqueline E. January 2016 (has links)
The overall goal of this thesis was to determine whether optical tomographic imaging can be employed to predict treatment outcome in women with breast cancer (BC) who undergo neoadjuvant chemotherapy (NACT). NACT is widely applied as a standard treatment for patients with newly diagnosed operable invasive BC. Only about 13-30% of women have a response to this treatment. Furthermore, NACT is an expensive and toxic treatment that takes several months to completely administer. In order to know the response of the patient, physicians usually need to wait until the months of NACT has finished and the patient has undergo surgery in which they receive the pathology. If the long-term treatment response could be predicted early into the treatment regimen, the patient would be relieved of any unnecessary side effects and alternative treatments could be initiated. We have used a novel dynamic DOT system to study the effects of targeted NACT. Unlike X-ray imaging, which requires potentially harmful ionizing radiation, DOT can be applied without side effects, which is particularly important in the case of multiple imaging sessions to be performed over the course of treatment. We have tracked 40 subjects and imaged them at 6 different time points during their NACT. For this study, two different types of data were collected: static (single 3D image) and dynamic (3D movies). The combination of the data may be used to accurately determine the response of the patient. With non-invasive, non-ionizing DOT imaging we have been able to determine within two weeks if the patient will respond to treatment with an accuracy as high as 94.1%.
|
144 |
Investigating the chemopreventive effect of hesperetin, luteolin and cyclooxygenase inhibitors in a mouse model of breast cancer.January 2012 (has links)
乳腺癌是女性最常見的腫瘤之一,多發生在女性絶經後,並具有雌激素依賴性。芳香化酶(CYP19)是雌激素生物合成過程中的關鍵酶,而芳香化酶抑製劑(AI)則被用於替代治療雌激素依賴性的乳腺癌。然而,AI在降低雌激素水平的同時能夠引起骨質酥鬆。此項研究的目的是找尋AI替代物。 / 黃酮類化合物是一種多酚化合物,廣泛分佈于植物中。我們先前的研究發現二氢黄酮陈皮素能夠抑制芳香化酶的生物活性,并且抑制芳香化酶高表達的乳腺癌生長。在本研究中,我們發現陳皮素在抑制腫瘤生長的同時能夠降低来曲唑引起的骨質流失。木犀草素是另外一種黄酮类化合物,它同樣能夠抑制芳香化酶的活性并減少骨流失。而與陳皮素不同的是,它能夠抑制芳香化酶的表達。在芳香化酶高表達的乳腺癌細胞(MCF-7 aro)中,木犀草素抑制芳香化酶活性的IC50是3 μM。在MCF-7 細胞中,5 μM的木犀草素能夠抑制CYP19 mRNA 的表達,螢光素酶報告實驗顯示木犀草素是通過作用于啟動子I.3和II來抑制CYP19的表達。蛋白印跡實驗表明木犀草素抑制CYP19表達的分子機制可能通過調節JNK信號通路進而減少AP-1的活性來實現。動物實驗結果顯示木犀草素能夠抑制MCF-7aro腫瘤的生長并改善來曲唑引起的骨流失。 / 環氧化酶(COX)是花生四烯酸轉化為前列腺素途徑中的一種關鍵酶。研究發現COX-2在乳腺癌組織中廣泛表達。本實驗研究了COX抑製劑在裸鼠動物模型中對乳腺癌腫瘤的作用機制。研究結果表明塞來昔布和阿司匹林在不影響血液中雌激素水平的情況下抑制乳腺癌腫瘤的生長。蛋白印迹實驗顯示這兩種藥物能夠降低腫瘤中COX-2,Cyclin A和Bcl-xL的表達。miR-98, miR-222和miR-145也能夠被塞來昔布和阿司匹林影響。 / 本研究表明陳皮素,木犀草素及COX抑制劑有潛力成為替代AI的化學治療藥物或共同治療藥物。 / Breast cancer is one of the most prevalent cancers affecting women. The majority of breast tumor growth occurred in the post-menopausal period are estrogen dependent. Aromatase (CYP19) catalyzes the rate-limiting step in the synthetic reaction of estrogen and aromatase inhibitors (AIs) are contemporary treatment for estrogen-positive breast cancer. However, estrogen-lowering drugs may promote osteoporosis. Our objective of this study further identified some alternatives for AIs. / Flavonoids are polyphenolic compounds that are ubiquitously distributed in plants. We have previously found that the flavanone hesperetin can inhibit the activity of aromatase and suppress aromatase-expressing breast tumor growth. In this project, we investigated the potential interaction between hesperetin and the AI letrozole in a mouse model. Our results showed that hesperetin could inhibit the tumor growth and reduce bone loss induced by letrozole. Similarly, another flavonoid luteolin also inhibited aromatase and prevented bone deterioration as observed in this project. In cells stably transfected with CYP19 (MCF-7aro), luteolin inhibited the aromatase activity with an IC50 value of 3μM. In addition, 5μM luteolin significantly reduced CYP19 mRNA expression in MCF-7 cells. Luciferase reporter assay revealed that luteolin could suppress CYP19 transcription at promoter regions I.3 and II. Western analysis illustrated that JNK signaling pathway was involved and deactivation of AP-1 could be the underlying molecular mechanism. Subsequently, we examined the effect in vivo. Our results showed that luteolin could inhibit the MCF-7aro tumor growth and improved bone loss induced by letrozole. / Cyclooxygenase (COX) is an enzyme responsible for the conversion of arachidonic acid into prostaglandins. It is over-expressed in breast cancer tissue and an increased expression of COX-2 was also observed in the xenograft model employed in this project. In the last study we evaluated the importance of COX-2 in breast tumor growth in this model. Our data showed that celecoxib and aspirin could significantly suppress the tumor growth without changing the plasma estrogen level. Western analysis illustrated that COX-2, Cyclin A, Bcl-xL and ER were reduced in celecoxib- and aspirin- treated tumor samples and miR-98, miR-222 and miR-145 were altered by celecoxib or aspirin. / After all, this project demonstrated that hesperetin, luteolin and COX-inhibitors could be potential chemopreventive or co-therapeutic agents. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Li, Fengjuan. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 131-148). / Abstract also in Chinese. / ACKNOWLEDGEMENTS --- p.I / ABSTRACT --- p.II / 摘要 --- p.IV / LIST OF ABBREVIATIONS --- p.V / TABLE OF CONTENTS --- p.VII / CHAPTER 1 --- p.1 / GENERAL INTRODUCTION --- p.1 / Chapter 1.1 --- Types of Breast Cancer --- p.3 / Chapter 1.2 --- Nuclear Receptor Signaling Pathways in Breast Cancer --- p.5 / Chapter 1.3 --- Estrogen and Breast Cancer --- p.7 / Chapter 1.4 --- Estrogen and Bone Health --- p.8 / Chapter 1.5 --- Estrogen Biosynthesis and Aromatase --- p.10 / Chapter 1.6 --- Tissue Specific Promoter for Aromatase Expression --- p.13 / Chapter 1.7 --- Nuclear Receptors and Aromatase Promoter Regulation --- p.15 / Chapter 1.8 --- Signaling Pathway and Aromatase Expression --- p.17 / Chapter 1.9 --- Cell Cycle in Breast Cancer --- p.20 / Chapter 1.10 --- Cell Apoptosis --- p.23 / Chapter 1.11 --- Treatment of breast cancer --- p.25 / Chapter 1.12 --- Phytoestrogens --- p.29 / Chapter 1.13 --- Aim of My Study --- p.32 / CHAPTER 2 --- p.33 / MATERIALS AND METHODS --- p.33 / Chapter 2.1 --- Chemicals and Materials --- p.33 / Chapter 2.1.1 --- Chemicals --- p.33 / Chapter 2.1.2 --- Plasmids --- p.33 / Chapter 2.2 --- Cell Culture --- p.33 / Chapter 2.3 --- Aromatase Activity Assay --- p.34 / Chapter 2.4 --- Quantitative Real Time PCR --- p.36 / Chapter 2.4.1 --- RNA Isolation and cDNA Synthesis --- p.36 / Chapter 2.4.2 --- Quantitative Real Time PCR Assay --- p.37 / Chapter 2.4.3 --- MiRNA Quantitative Real Time PCR Assay --- p.38 / Chapter 2.5 --- Western Blot --- p.39 / Chapter 2.6 --- Measurement of Promoter Activity --- p.41 / Chapter 2.6.1 --- Plasmid Preparation --- p.41 / Chapter 2.6.2 --- Transient Transfection and Dual-Luciferase Assay --- p.42 / Chapter 2.7 --- Electrophoretic Mobility Shift Assay (EMSA) --- p.43 / Chapter 2.7.1 --- Nuclear protein extraction --- p.43 / Chapter 2.7.2 --- Electrophorectic Mobility Shift Assay --- p.44 / Chapter 2.8 --- Animal Experiment Design --- p.45 / Chapter 2.8.1 --- Animal Model for Hesperetin Study --- p.45 / Chapter 2.8.2 --- Animal Model for Luteolin Study --- p.46 / Chapter 2.8.3 --- Animal Model for Cycooxygenase Inhibitors Study --- p.48 / Chapter 2.8.4 --- Serum Estradiol Determination --- p.49 / Chapter 2.8.5 --- Analysis of serum lipoproteins --- p.49 / Chapter 2.8.6 --- Bone Image Acquisition and Region of Interest Selection --- p.50 / Chapter 2.9 --- Statistical Analysis --- p.50 / CHAPTER 3 --- p.51 / The citrus flavonone hesperetin prevents letrozole- induced bone loss in a mouse model of breast cancer --- p.51 / Chapter 3.1 --- Introduction --- p.51 / Chapter 3.2 --- Results --- p.54 / Chapter 3.2.1 --- Murine Body Weight and Liver Weight --- p.54 / Chapter 3.2.2 --- Effect of Hesperetin and Letrozole on Xenograft Growth in Ovariectomized Mice --- p.55 / Chapter 3.2.3 --- Hesperetin Reduced Plasma Estradiol Concentration --- p.58 / Chapter 3.2.4 --- PS2 mRNA Expression in Tumor --- p.59 / Chapter 3.2.5 --- Uterine Wet Weight --- p.60 / Chapter 3.2.6 --- Hesperetin Prevent Bone Deterioration Induced by Letrozole --- p.61 / Chapter 3.3 --- DISCUSSION --- p.63 / CHAPTER 4 --- p.66 / dIETARY FLAVONOID LUTEOLIN ON cyp19 transcription in the breast cancer cells mcf-7 --- p.66 / Chapter 4.1 --- Introduction --- p.66 / Chapter 4.2 --- Results --- p.68 / Chapter 4.2.1 --- Inhibitory Effect of Luteolin on Aromatase Activity --- p.68 / Chapter 4.2.2 --- Luteolin Reduced Aromatase mRNA Expression in MCF-7 Cells --- p.70 / Chapter 4.2.3 --- Effect of Luteolin on Promoter I.3/II Activity of CYP19 in MCF-7 Cells --- p.71 / Chapter 4.2.4 --- The Effect of Luteolin on Truncation CYP19 Gene Reporter Assay --- p.72 / Chapter 4.2.5 --- Luteolin Reduced AP-1 Binding in Promoter I.3/II DNA Fragment --- p.74 / Chapter 4.2.6 --- Inhibitory Effect of Luteolin on Protein Kinase Signaling --- p.76 / Chapter 4.3 --- Discussion --- p.78 / CHAPTER 5 --- p.83 / interaction OF LUTEOLIN and letrozole in a postmenopausal breast cancer model --- p.83 / Chapter 5.1 --- Introduction --- p.83 / Chapter 5.2 --- Results --- p.86 / Chapter 5.2.1 --- Luteolin and letrozole treatment had no effect on mouse body weight and liver weight --- p.86 / Chapter 5.2.2 --- Effect of luteolin and Letrozole on Xenograft Growth in Ovariectomized Mice --- p.88 / Chapter 5.2.3 --- Luteolin reduced plasma estradiol concentration --- p.91 / Chapter 5.2.4 --- Luteolin Counteracted Uterine Weight Reduction under Letrozole Treatment --- p.92 / Chapter 5.2.5 --- Luteolin Prevented Bone Deterioration Induced by Letrozole --- p.93 / Chapter 5.2.6 --- The Effect of Luteolin on Plasma TC and TG --- p.95 / Chapter 5.2.7 --- Luteolin Increased HDL Level and Reduced the Ratio of LDL/HDL --- p.97 / Chapter 5.2.8 --- Effect of Luteolin on Cell Cycle and Apoptotic Protein Expression --- p.99 / Chapter 5.3 --- DISCUSSION --- p.104 / CHAPTER 6 --- p.107 / cyclooxygenase inhibitors suppresse breast tumor growth in NUDE MICE --- p.107 / Chapter 6.1 --- Introduction --- p.107 / Chapter 6.2 --- Results --- p.109 / Chapter 6.2.1 --- Celecoxib and aspirin treatment had no effect on mouse body weight and liver weight --- p.109 / Chapter 6.2.2 --- Effect of celecoxib and aspirin on Xenograft Growth in Ovariectomized Mice --- p.111 / Chapter 6.2.3 --- Celecoxib and aspirin had no effect on plasma estradiol concentration --- p.113 / Chapter 6.2.4 --- Celecoxib and Aspirin Had no Effect on Uterine Weight --- p.114 / Chapter 6.2.5 --- Protein expression of COX-2, Cell cycle-related and cell Apoptotic Genes --- p.115 / Chapter 6.2.6 --- Detection of Related miRNA Expression Level in Tumors --- p.118 / Chapter 6.2.7 --- c-Myc mRNA Expression Level were Regulated in Tumors --- p.121 / Chapter 6.3 --- DISCUSSION --- p.124 / CHAPTER 7 --- p.127 / SUMMARY --- p.127 / REFERENCE --- p.131
|
145 |
Efeitos da finasterida sobre culturas de células epiteliais prostáticas normais e tumorais em diferentes sistemas in vitroMoroz, Andrei [UNESP] 25 February 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-02-25Bitstream added on 2014-06-13T18:41:13Z : No. of bitstreams: 1
moroz_a_dr_botib.pdf: 3424039 bytes, checksum: a7c3216b5e555a810395696e16f33e9b (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O câncer de próstata (CaP) é importante causa de morte no mundo. Além do óbvio impacto na vida pessoal do paciente e na sua família, no Brasil esta doença gera custos altíssimos para o Sistema Único de Saúde (SUS), desde o diagnóstico até o óbito. As terapias disponíveis, além de causarem complicações e efeitos colaterais indesejáveis, não proporcionam sobrevida alta ao paciente. Além disso, os casos de cura são restritos aos diagnosticados precocemente, e com intervenção rápida, antes que o tumor se torne resistente à castração química. Neste sentido, estratégias preventivas são desejáveis para a diminuição da incidência e óbitos e, dentre elas, o uso da finasterida, um fármaco inibitório da enzima 5-α-redutase, foi proposto como potencial agente quimiopreventivo após estudo conduzido pelo Prostate Cancer Prevention Trial, que demonstrou significante diminuição na incidência de CaP no grupo de pacientes tratados, em comparação ao grupo controle. No entanto, mesmo com resultados promissores, foi detectado aumento, também significante, do número de casos de cânceres mais agressivos (alto grau) no grupo de pacientes que recebeu finasterida, em comparação aos pacientes do grupo controle. Após intenso debate entre urologistas, biologistas e cancerologistas, ainda não há consenso sobre a natureza artefatual ou de real indução de cânceres mais agressivos pela finasterida. O órgão regulatório americano Food and Drugs Administration (FDA) declarou que o aumento dos casos agressivos pela finasterida não deve ser negligenciado, e recentemente proibiu o uso deste fármaco como quimiopreventivo para o CaP. Uma vez que casos agressivos de câncer estão comumente relacionados à superexpressão de enzimas... / Prostate cancer (PCa) is an important death cause in Brazil and other countries. Besides the obvious impact at patient’s life, and their relatives, this disease consumes exorbitant resources from the Sistema Único de Saúde (SUS), from diagnosis to death. The available therapies not only cause undesirable complications and side effects, but also are inefficient at providing good survival expectancies for those affected. Moreover, the cure is only possible when the tumors are readily found and when the intervention is fast enough to prevent that the tumor become castration-resistant. In this sense, preventive strategies are desirable in order to lower incidence and death, and amongst them, finasteride (Fin) treatment, an inhibitor of the 5-alpha reductase enzyme, was proposed as a potential chemopreventive agent after the study conducted by the Prostate Cancer Prevention Trial reported a significant lower incidence of PCa cases on Fin-treated patients, when compared to control patients. However, even though these results were promising, this study also reported a significant increase on more aggressive, high-grade PCa, amongst Fin-treated patients, compared to those not exposed to Fin. After an intense debate about factual or artifactual Fin-induced high-grade PCa cases, between urologists, biologists and oncologists, there are still no decisive conclusions on this matter. The regulatory USA organ, Food and Drugs Administration (FDA), has recently declared that the higher incidence of a more serious form of PCa at the Fin-treated patients must not be neglected, and prohibited its use as a chemopreventive agent. Given that the aggressive cancer cases are commonly associated with the super-expression of matrix metalloproteinases (MMPs) enzymes, with consequently higher invasion and migration potential of tumor... (Complete abstract click electronic access below)
|
146 |
Cyanidin protects HK-2 proximal tubular cells against cisplatin-induced apoptosis through modulating AKT and ERK pathways.January 2010 (has links)
Gao, Si. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 77-85). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ii / Abstract (in Chinese) --- p.iv / List of Abbreviations --- p.v / List of Figures --- p.vii / Table of Contents --- p.ix / Chapter Chapter One: --- Introduction --- p.1 / Chapter 1.1. --- Cancer --- p.1 / Chapter 1.2. --- Chemotherapy --- p.2 / Chapter 1.3. --- Cisplatin --- p.3 / Chapter 1.4. --- Cisplatin-induced nephrotoxicity --- p.4 / Chapter 1.5. --- Mechanisms of cisplatin-induced nephrotoxicity --- p.5 / Chapter 1.5.1. --- Apoptosis in cisplatin-induced nephrotoxicity --- p.5 / Chapter 1.5.2. --- MAPK activation in cisplatin-induced nephrotoxicity --- p.7 / Chapter 1.5.3. --- Oxidative stress in cisplatin-induced nephrotoxicity --- p.8 / Chapter 1.6. --- Polyphenols --- p.10 / Chapter 1.7. --- Anthocyanins --- p.10 / Chapter 1.8. --- Rose --- p.11 / Chapter 1.9. --- Cyanidin --- p.12 / Chapter 1.10. --- Objectives of this project --- p.13 / Chapter Chapter Two: --- Materials and Methods --- p.15 / Chapter 2.1. --- Materials --- p.15 / Chapter 2.2. --- Cell culture --- p.15 / Chapter 2.3. --- Drug treatment --- p.16 / Chapter 2.4. --- MTT assay --- p.16 / Chapter 2.5. --- Lactate dehydrogenase (LDH) assay --- p.16 / Chapter 2.6. --- TUNEL assay and DAPI staining --- p.17 / Chapter 2.7. --- Flow cytometric analysis --- p.17 / Chapter 2.8. --- Determination of caspase-3 activity --- p.18 / Chapter 2.9. --- Measurement of ROS generation --- p.18 / Chapter 2.10. --- Evaluation of mitochondrial membrane potential --- p.19 / Chapter 2.11. --- Single Cell Gel Electrophoresis (Comet Assay) --- p.19 / Chapter 2.12. --- Western blot analysis --- p.20 / Chapter 2.13. --- Statistical analysis --- p.21 / Chapter Chapter Three: --- Results --- p.22 / Chapter 3.1. --- Cyanidin attenuates cisplatin-induced cytotoxicity in HK-2 cells --- p.22 / Chapter 3.1.1. --- Cytotoxicity induces by cisplatin in HK-2 cells --- p.22 / Chapter 3.1.2. --- Rose extract attenuates cisplatin-induced cytotoxicity and LDH leakage --- p.26 / Chapter 3.1.3. --- Cyanidin attenuates cisplatin-induced cytotoxicity and LDH leakage --- p.26 / Chapter 3.1.4. --- Cyanidin did not affect cisplatin-induced cytotoxicity in Hela cell --- p.30 / Chapter 3.2. --- Cyanidin rescues HK-2 cells from cisplatin-induced apoptosis --- p.31 / Chapter 3.2.1. --- Cisplatin induces cell apoptosis in HK-2 cells --- p.31 / Chapter 3.2.2. --- Rose extract rescues HK-2 cells from cisplatin-induced apoptosis --- p.31 / Chapter 3.2.3. --- Cyanidin rescues HK-2 cells from cisplatin-induced apoptosis --- p.32 / Chapter 3.3. --- Cyanidin suppresses cisplatin-induced activation of caspase and cleavage of PARP --- p.38 / Chapter 3.3.1. --- Cisplatin induces activation of caspase-3 --- p.38 / Chapter 3.3.2. --- Rose extract suppresses cisplatin-induced activation of caspase-3 --- p.38 / Chapter 3.3.3. --- Cyanidin suppresses cisplatin-induced activation of caspase-3 --- p.38 / Chapter 3.3.4. --- Rose extract suppresses cisplatin-induced caspase activation and PARP cleavage --- p.41 / Chapter 3.3.5. --- Cyanidin suppresses cisplatin-induced caspase activation and PARP cleavage --- p.43 / Chapter 3.4. --- Cyanidin rescues HK-2 cells from cisplatin-induced mitochondrial dysfuntion by regulating the expression of Bcl-2 family proteins --- p.43 / Chapter 3.4.1. --- Cyanidin prevents cisplatin-induced loss of mitochondrial membrane potential (A^m) --- p.43 / Chapter 3.4.2. --- Cyanidin regulates the expression of Bcl-2 family proteins to prevent cisplatin-induced mitochondrial dysfunction --- p.44 / Chapter 3.5. --- Cyanidin reduces cisplatin-induced apoptosis by suppressing the activation of p53 --- p.46 / Chapter 3.6. --- Cyanidin inhibits ROS-mediated DNA damage in HK-2 cells --- p.48 / Chapter 3.6.1. --- Cyanidin prevents cisplatin-induced DNA damage --- p.48 / Chapter 3.6.2. --- Cyanidin inhibits cisplatin-induced accumulation of ROS --- p.48 / Chapter 3.7. --- "Cyanidin suppresses cisplatin-induced apoptosis by activation of AKT, JNK and ERK" --- p.52 / Chapter 3.7.1. --- Cisplatin activates ERK and AKT pathways --- p.52 / Chapter 3.7.2. --- Cyanidin suppresses cisplatin-induced activation of MAPKs and AKT pathways --- p.52 / Chapter 3.7.3. --- AKT and ERK Inhibitors attenuates cisplatin-induced apoptosis in HK-2 cells --- p.53 / Chapter Chapter Four: --- Discussion --- p.60 / Chapter 4.1. --- Cell model and cisplatin treatment --- p.60 / Chapter 4.2. --- Cisplatin nephrotoxicity and its renoprevention --- p.61 / Chapter 4.3. --- Rose extract prevents cisplatin-induced apoptosis in HK-2 cells --- p.62 / Chapter 4.3.1. --- Rose extract prevents cisplatin-induced apoptosis in HK-2 cells --- p.63 / Chapter 4.3.2. --- Rose extract inhibits cisplatin-induced caspase activation and PARP cleavage --- p.64 / Chapter 4.4. --- Cyanidin prevents cisplatin-induced apoptosis in HK-2 cells --- p.66 / Chapter 4.4.1. --- Cyanidin will not affect cisplatin-induced cell death in HeLa cells --- p.66 / Chapter 4.4.2. --- Cyanidin prevents cisplatin-induced apoptosis by inhibiting caspase activation and PARP cleavage in HK-2 cells --- p.66 / Chapter 4.4.3. --- Cyanidin prevents the cisplatin-induced loss of mitochondrial membrane potential by regulating Bcl-2 proteins in HK-2 cells --- p.67 / Chapter 4.4.4. --- Cyanidin suppresses cisplatin-induced total and phosphorylated p53 activation --- p.68 / Chapter 4.4.5. --- Cyanidin prevents the cisplatin-induced overproduction of intracellular ROS and subsequent DNA damage in HK-2 cells --- p.69 / Chapter 4.4.6. --- Cyanidin suppresses the cisplatin-induced activation of MAPKs and AKT pathways in HK-2 cells --- p.71 / Chapter Chapter Five: --- Conclusion --- p.74 / References --- p.77
|
147 |
In vitro and in vivo study of effects of sinigrin on liver.January 2006 (has links)
Meng Jie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 論文摘要 --- p.iv / Table of Contents --- p.vi / Abbreviation --- p.x / List of Figures --- p.xi / List of Tables --- p.xiii / Chapter Chapter 1: --- Introduction --- p.1 / Chapter 1.1 --- Black Mustard and Sinigrin --- p.2 / Chapter 1.2 --- Hepatocellular Carcinoma --- p.5 / Chapter 1.2.1 --- Different Stages of HCC --- p.6 / Chapter 1.2.2 --- Risk Factors --- p.8 / Chapter 1.2.3 --- Treatments of HCC --- p.10 / Chapter 1.3 --- Biomarkers Used to Evaluate Effects of Sinigrin on HCC --- p.12 / Chapter 1.3.1 --- AST & ALT --- p.12 / Chapter 1.3.2 --- Glutathione S Transferase -p (GST-p) --- p.13 / Chapter 1.4 --- Tumor Suppressor Genes and Oncogenes --- p.14 / Chapter 1.4.1 --- "p53, the Tumor Suppressor Gene" --- p.15 / Chapter 1.4.2 --- p53-dependent pathway --- p.15 / Chapter 1.4.2.1 --- Mdm2 --- p.16 / Chapter 1.4.2.2 --- Bax and Bcl-2 --- p.17 / Chapter 1.4.2.3 --- PCNA and p21wAF1/CIP1 --- p.18 / Chapter 1.5 --- Aim of the Project --- p.19 / Chapter Chapter 2: --- Materials and Methods --- p.20 / Chapter 2.1 --- In vitro Studies --- p.21 / Chapter 2.1.1 --- Neutral Red Assay --- p.21 / Chapter 2.1.1.1 --- Chemicals and Reagents --- p.21 / Chapter 2.1.1.2 --- Liver Cells --- p.23 / Chapter 2.1.1.3 --- Neutral Red Assay --- p.24 / Chapter 2.1.2 --- Flow Cytometery --- p.24 / Chapter 2.1.2.1 --- Chemicals and Reagents --- p.25 / Chapter 2.1.2.2 --- Flow Cytometery Analysis --- p.25 / Chapter 2.1.3 --- DNA Fragmentation --- p.26 / Chapter 2.1.3.1 --- Chemicals and Reagents --- p.26 / Chapter 2.1.3.2 --- DNA Extraction --- p.28 / Chapter 2.1.3.3 --- DNA Agarose Gel Electrophoresis --- p.29 / Chapter 2.1.4 --- cDNA Microarray --- p.29 / Chapter 2.1.4.1 --- Chemicals and Reagents --- p.30 / Chapter 2.1.4.2 --- RNA Extraction --- p.33 / Chapter 2.1.4.3 --- RNA Quantity and Quality Control --- p.34 / Chapter 2.1.4.4 --- RT-PCR --- p.35 / Chapter 2.1.4.5 --- cRNA Convention and Purification --- p.36 / Chapter 2.1.4.6 --- Hybridization --- p.37 / Chapter 2.1.4.7 --- Washing and Detection --- p.37 / Chapter 2.1.4.8 --- Data Analysis --- p.38 / Chapter 2.2 --- In vivo Studies --- p.39 / Chapter 2.2.1 --- Animal Treatment --- p.39 / Chapter 2.2.1.1 --- Chemicals and Reagents --- p.39 / Chapter 2.2.1.2 --- Chemical Carcinogens --- p.40 / Chapter 2.2.1.3 --- Promotion Stage --- p.41 / Chapter 2.2.1.4 --- Progression Stage --- p.44 / Chapter 2.2.2 --- Measurement of Serum ALT and AST Activities --- p.46 / Chapter 2.2.2.1 --- Chemicals and Reagents --- p.46 / Chapter 2.2.2.2 --- Activity Assay --- p.46 / Chapter 2.2.3 --- Histological Analysis --- p.47 / Chapter 2.2.3.1 --- Chemicals and Reagents --- p.47 / Chapter 2.2.3.2 --- Preparation of Slides --- p.49 / Chapter 2.2.3.3 --- H&E Staining --- p.49 / Chapter 2.2.3.4 --- GST-p Immuno-staining --- p.50 / Chapter 2.2.4 --- Semi-Quantitative RT-PCR Analysis of mRNA Expression --- p.53 / Chapter 2.2.4.1 --- Chemicals and Reagents --- p.53 / Chapter 2.2.4.2 --- Extraction of total RNA from rat liver --- p.53 / Chapter 2.2.4.3 --- Quantity and Quality Control of RNA --- p.53 / Chapter 2.2.4.4 --- RT-PCR (Reverse Transcription) --- p.54 / Chapter 2.2.4.5 --- PCR --- p.54 / Chapter 2.2.4.6 --- DNA gel electrophoresis --- p.55 / Chapter 2.2.4.7 --- Data Analysis --- p.56 / Chapter 2.2.5 --- Western Blot Analysis for Biomarkers --- p.56 / Chapter 2.2.5.1 --- Chemicals and Reagents --- p.56 / Chapter 2.2.5.2 --- Extraction of the Cytosol Protein --- p.60 / Chapter 2.2.5.3 --- Extraction of the Nuclear protein --- p.61 / Chapter 2.2.5.4 --- SDS Gel Electrophoresis --- p.61 / Chapter 2.2.5.5 --- Western Blot --- p.62 / Chapter 2.2.5.6 --- Interaction with Antibodies --- p.63 / Chapter 2.2.5.7 --- ECL Detection --- p.63 / Chapter 2.2.5.8 --- Data Analysis --- p.64 / Chapter Chapter 3: --- Results --- p.65 / Chapter 3.1 --- In vitro Studies --- p.66 / Chapter 3.1.1 --- Cell Viability test and IC50 --- p.66 / Chapter 3.1.2 --- Cell Cycle Analysis --- p.68 / Chapter 3.1.3 --- DNA Fragmentation --- p.71 / Chapter 3.1.4 --- Effects of Sinigrin on Gene Expression --- p.73 / Chapter 3.2 --- In vivo Studies --- p.77 / Chapter 3.2.1 --- Effects of Sinigrin on HCC Development (Promotion stage) in Rats --- p.77 / Chapter 3.2.1.1 --- Direct Observation --- p.77 / Chapter 3.2.1.2 --- Relative Liver / Body Weight Ratio --- p.79 / Chapter 3.2.1.3 --- AST/ALT Assay --- p.81 / Chapter 3.2.1.4 --- Basic Structure of Hepatocytes --- p.83 / Chapter 3.2.1.5 --- GST-p Foci Area --- p.85 / Chapter 3.2.1.6 --- mRNA Expression of p53 and Mdm2 --- p.88 / Chapter 3.2.1.7 --- Protein Expression of Biomarkers --- p.90 / Chapter 3.2.2 --- Effects of Sinigrin on HCC Development (Progression stage) in Rats --- p.97 / Chapter 3.2.2.1 --- Direct Observation --- p.97 / Chapter 3.2.2.2 --- Relative Liver / Body Weight Ratio --- p.99 / Chapter 3.2.2.3 --- AST/ALT Assay --- p.101 / Chapter 3.2.2.4 --- Basic Structure of Hepatocytes --- p.103 / Chapter 3.2.2.5 --- GST-p Foci Area --- p.105 / Chapter 3.2.2.6 --- mRNA Expression of p53 and Mdm2 --- p.108 / Chapter 3.2.2.7 --- Protein Expression of Biomarkers --- p.110 / Chapter Chapter 4: --- Discussion --- p.116 / Chapter 4.1 --- Protective and Therapeutic Benefits of Sinigrin --- p.117 / Chapter 4.1.1 --- Effects of SIN on Cancer and Normal Cells --- p.117 / Chapter 4.1.2 --- Effective Tumor Induction by DEN-CC14 Treatment --- p.118 / Chapter 4.1.3 --- Protective Effect of SIN in the Promotion Stage of HCC --- p.118 / Chapter 4.1.4 --- Therapeutic Effect of SIN in the Progression Stage of HCC --- p.119 / Chapter 4.2 --- Biological Activities of SIN --- p.121 / Chapter 4.3 --- Summary --- p.134 / References --- p.xiv
|
148 |
In vitro and in vivo study of effects of andrographolide on hepatocarcinogenesis.January 2006 (has links)
Lau Ven Gie Vengie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 113-121). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABSTRACT --- p.ii / 論文摘要 --- p.iv / TABLE OF CONTENTS --- p.vi / LIST OF FIGURES --- p.ix / LIST OF TABLES --- p.x / LIST OF ABBREVIATIONS --- p.xi / INTRODUCTION --- p.1 / Chapter I --- Hepatocellular Carcinoma --- p.1 / Risk factors --- p.1 / Stages in chemical carcinogenesis --- p.2 / Initiation --- p.2 / Promotion --- p.3 / Progression --- p.5 / Treatment of hepatocarcinoma --- p.6 / Chemotherapy ´ؤ hepatic arterial infusion (HAI) --- p.6 / Trans-arterial chemoembolization (TACE) --- p.7 / Radiofrequency ablation (RFA) --- p.8 / Percutaneous ethanol injection (PEI) --- p.9 / Liver resection --- p.9 / Liver transplantation --- p.10 / Chapter II --- Molecular Mechanisms: Oncogenes and Tumor-suppressor genes --- p.11 / Cell cycle control --- p.12 / p53 mutation in HCC --- p.13 / Normal functions of p53 and its target genes --- p.13 / p21(Wafl/Cipl/Sdil) --- p.13 / PCNA --- p.14 / Bcl-2 and Bax: the Bcl-2 family --- p.14 / Mdm2 --- p.17 / Chapter III --- Evaluation of the effects of hepatocarcinogenesis --- p.19 / GST-Pi --- p.19 / AST & ALT --- p.19 / Chapter IV --- Traditional Chinese Medicine (TCM) --- p.21 / Andrographis Paniculata --- p.21 / Pharmacological properties of andrographolide --- p.23 / Chapter V --- Aim of the project --- p.26 / MATERIALS AND METHODS --- p.27 / Chapter 1 --- Effects of andrographolide on cell viability and cell cycle --- p.27 / Chapter 1.1 --- Materials and solutions --- p.27 / Chapter 1.2 --- Preparation of solutions --- p.28 / Chapter 1.3 --- Procedures --- p.29 / Chapter 1.3.1 --- Seeding cells into culture flask --- p.29 / Chapter 1.3.2 --- Subculturing technique --- p.30 / Chapter 1.3.3 --- Neutral red assay --- p.30 / Chapter 1.3.4 --- DNA purification of HepG2 cells --- p.31 / Chapter 1.3.5 --- DNA gel electrophoresis --- p.32 / Chapter 1.3.6 --- Flow cytometry --- p.32 / Chapter 2 --- Effects of andrographolide on gene expressions --- p.33 / Chapter 2.1 --- Materials and solutions --- p.33 / Chapter 2.2 --- Preparation of solutions --- p.34 / Chapter 2.3 --- Procedures --- p.35 / Chapter 2.3.1 --- Cell treatments --- p.35 / Chapter 2.3.2 --- mRNA extraction from cell --- p.35 / Chapter 2.3.3 --- Determination of total RNA yield and quality yield --- p.36 / Chapter 2.3.4 --- RNA formaldehyde agarose gel electrophoresis --- p.36 / Chapter 2.3.5 --- cDNA synthesis --- p.37 / Chapter 2.3.6 --- "cRNA synthesis, labeling and amplification" --- p.39 / Chapter 2.3.7 --- cRNA purification --- p.40 / Chapter 2.3.8 --- Oligo GEArray hybridization --- p.41 / Chapter 2.3.9 --- Chemiluminescent detection --- p.43 / Chapter 2.3.10 --- Data analysis --- p.44 / Chapter 3 --- Effects of andrographolide on hepatocarcinogenesis in rats --- p.45 / Chapter 3.1 --- Materials and solutions --- p.45 / Chapter 3.2 --- Preparation of solutions --- p.46 / Chapter 3.3 --- Procedures --- p.47 / Chapter 3.3.1 --- Animal treatment --- p.47 / Chapter 3.3.2 --- Promotion (Experiment 1) --- p.48 / Chapter 3.3.3 --- Progression (Experiment 2) --- p.49 / Chapter 3.3.4 --- Extraction of blood serum --- p.52 / Chapter 3.3.5 --- Measurement of absorbance --- p.52 / Chapter 3.3.6 --- Tissue processing --- p.53 / Chapter 3.3.7 --- Hematoxylin and Eosin (H&E) Staining --- p.53 / Chapter 3.3.8 --- Immunohistochemical staining of GST-P --- p.54 / Chapter 3.3.9 --- Examination of liver sections --- p.55 / Chapter 4 --- "Effects of andrographolide on the expressions of Mdm2, p53, PCNA, Bax, Bcl-2 & p21" --- p.56 / Chapter 4.1 --- Materials and solutions --- p.56 / Chapter 4.2 --- Preparation of solutions --- p.57 / Chapter 4.3 --- Procedures --- p.59 / Chapter 4.3.1 --- Total mRNA extraction from liver --- p.59 / Chapter 4.3.2 --- Reverse transcription of mRNA to cDNA --- p.59 / Chapter 4.3.3 --- Protocol for polymerase chain reaction (PCR) --- p.60 / Chapter 4.3.4 --- DNA gel electrophoresis --- p.61 / Chapter 4.3.5 --- Nuclear protein extraction --- p.61 / Chapter 4.3.6 --- Cytosolic protein extraction --- p.62 / Chapter 4.3.7 --- Determination of protein concentration --- p.62 / Chapter 4.3.8 --- Immunoprecipitation of p53 from liver nuclear protein --- p.62 / Chapter 4.3.9 --- Protein gel electrophoresis by SDS-PAGE --- p.63 / Chapter 4.3.10 --- Western blotting --- p.64 / RESULTS --- p.66 / Chapter 1 --- Effects of andrographolide on cell viability and cell cycle --- p.66 / Chapter 2 --- Effects of andrographolide on gene expressions --- p.76 / Chapter 3 --- Effects of andrographolide on hepatocarcinogenesis in rats --- p.79 / Chapter 4 --- "Effects of andrographolide on the expressions of Mdm2, p53, PCNA, Bax, Bcl-2 & p21" --- p.91 / DISCUSSION --- p.102 / CONCLUSION --- p.111 / REFERENCES --- p.113
|
149 |
Anti-tumor effect of arsenic trioxide (As₂O₃) on human breast cancer.January 2007 (has links)
Zhou, Linli. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 108-118). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 論文摘要 --- p.iv / Abbreviations --- p.v / List of Figures --- p.vii / List of Tables --- p.ix / Table of Contents --- p.x / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Breast Cancer --- p.1 / Chapter 1.1.1 --- Introduction to Breast Cancer --- p.1 / Chapter 1.1.2 --- Types of Breast Cancer --- p.3 / Chapter 1.1.3 --- Epidemiologic Risk Factors and Etiology --- p.4 / Chapter 1.2 --- Estrogen and Breast Cancer --- p.7 / Chapter 1.3 --- Estrogen Receptor --- p.9 / Chapter 1.4 --- Current Treatment of Breast Cancer --- p.10 / Chapter 1.4.1 --- Chemotherapy --- p.10 / Chapter 1.4.2 --- Hormonal (Anti-Estrogen) Therapy --- p.11 / Chapter 1.4.2.1 --- Tamoxifen and Other Anti-estrogens --- p.12 / Chapter 1.4.2.2 --- Disadvantages of Tamoxifen --- p.13 / Chapter 1.5 --- Arsenic Trioxide --- p.14 / Chapter 1.5.1 --- The Characteristics of Arsenic Trioxide (AS2O3) --- p.14 / Chapter 1.5.2 --- The Medical use of Arsenic Trioxide (As2O3) --- p.16 / Chapter 1.5.3 --- Arsenic Trioxide (As2O3) in treating Acute Promyelocytic Leukemia (APL) --- p.17 / Chapter 1.5.3.1 --- Acute Promyelocytic Leukemia (APL) --- p.17 / Chapter 1.5.3.2 --- All-trans Retinoic Acid (ATRA) Treatment of APL --- p.18 / Chapter 1.5.3.3 --- Clinical Trial of the Arsenic Trioxide on APL --- p.19 / Chapter 1.5.3.4 --- In vitro and in vivo Study of Arsenic Trioxide (As2O3) in treating APL --- p.19 / Chapter 1.5.3.5 --- Common Side Effects of Arsenic Trioxide (As2O3) on APL --- p.21 / Chapter 1.5.4 --- Anti-cancer effect of Arsenic Trioxide on other cancers --- p.23 / Chapter 1.6 --- Aim of Study --- p.24 / Chapter Chapter 2 --- Materials and Methods --- p.26 / Chapter 2.1 --- Materials --- p.27 / Chapter 2.1.1 --- Cell Lines and Culture Medium --- p.27 / Chapter 2.1.1.1 --- Cell Lines --- p.27 / Chapter 2.1.1.2 --- Culture Medium --- p.27 / Chapter 2.1.2 --- Chemicals --- p.28 / Chapter 2.1.3 --- Buffers and Reagents --- p.29 / Chapter 2.1.4 --- Reagents for MTT Assay --- p.30 / Chapter 2.1.5 --- Reagents for DNA Fragmentation --- p.31 / Chapter 2.1.5.1 --- Reagents for DNA Extraction --- p.31 / Chapter 2.1.5.2 --- Reagents for Gel Electrophoresis --- p.31 / Chapter 2.1.6 --- Reagents for Western Blotting --- p.32 / Chapter 2.1.6.1 --- Reagents for Protein Extraction --- p.32 / Chapter 2.1.6.2 --- Reagents for SDS-PAGE --- p.33 / Chapter 2.1.7 --- Reagents for Flow Cytometry --- p.36 / Chapter 2.1.8 --- In Vivo Study --- p.37 / Chapter 2.2 --- Methods --- p.38 / Chapter 2.2.1 --- Cell Treatment --- p.38 / Chapter 2.2.2 --- Trypan Blue Exclusion Assay --- p.38 / Chapter 2.2.3 --- MTT Assay --- p.38 / Chapter 2.2.4 --- Detection of DNA Fragmentation --- p.39 / Chapter 2.2.5 --- Flow Cytometry --- p.40 / Chapter 2.2.5.1 --- Detection of Cell Cycle Pattern with PI --- p.40 / Chapter 2.2.5.2 --- Detection of Apoptosis with Annexin V-PI --- p.40 / Chapter 2.2.6 --- Western Blot Analysis --- p.41 / Chapter 2.2.6.1 --- Protein Extraction --- p.41 / Chapter 2.2.6.2 --- Protein Concentration Determination --- p.41 / Chapter 2.2.6.3 --- Western Blotting --- p.42 / Chapter 2.2.7 --- In Vivo Study --- p.44 / Chapter 2.2.7.1 --- Animal Model --- p.44 / Chapter 2.2.7.2 --- Treatment Schedule --- p.44 / Chapter 2.2.7.3 --- Toxicity of Arsenic Trioxide --- p.45 / Chapter Chapter 3 --- Anti-Proliferation Effect of As2O3 on MDA-MB-231 cells --- p.47 / Chapter 3.1 --- Study the Anti-proliferation Effect of As2O3 on MDA-MB-231 Cells by MTT Assay --- p.48 / Chapter 3.2 --- Comparsion Anti-proliferation Effect of AS2O3 on MDA-MB-231 Cells to that of Tamoxifen --- p.50 / Chapter 3.3 --- "Study Toxicity of AS2O3 on Normal Breast Cells Line, 184B5" --- p.52 / Chapter 3.4 --- Summary --- p.54 / Chapter Chapter 4 --- Mechanism of Growth Inhibition Effect of As2O3 on MDA-MB-231 cells --- p.56 / Chapter 4.1 --- Cell Cycle Analysis of As2O3 Treated MDA-MB-231 Cells --- p.57 / Chapter 4.2 --- Detection of DNA Fragmentation --- p.60 / Chapter 4.3 --- Detection of Apoptosis Induced by AS2O3 on MDA-MB-231 Cells by Flow Cytometry --- p.62 / Chapter 4.4 --- Regulation of Apoptotic Related Protein by As2O3 on MDA-MB-231 Cells --- p.64 / Chapter 4.4.1 --- Expression Level of Bcl-2 and Bax Protein --- p.66 / Chapter 4.4.2 --- Expression Level of Cytochrome C --- p.69 / Chapter 4.4.3 --- Expression Level of Caspase9 --- p.71 / Chapter 4.4.4 --- Expression Level of FasL --- p.73 / Chapter 4.4.5 --- Expression Level of Caspase8 --- p.75 / Chapter 4.4.6 --- Expression Level of Caspase3 --- p.77 / Chapter 4.4.7 --- Expression Level of Poly (ADP-ribose) Polymerase (PARP) --- p.79 / Chapter 4.4.8 --- Expression Level of p53 --- p.81 / Chapter 4.5 --- Regulation of Cell Cycle Related Protein by AS2O3 on MDA-MB-231 Cells --- p.83 / Chapter 4.5.1 --- Expression Level of Cyclin B --- p.84 / Chapter 4.5.2 --- Expression Level of Cyclin E --- p.86 / Chapter 4.6 --- Summary --- p.88 / Chapter Chapter 5 --- In Vivo Study of Anti-tumor Effect of As2O3 --- p.89 / Chapter 5.1 --- Anti-tumor Effect of AS2O3 on Tumor Bearing Nude Mice --- p.90 / Chapter 5.2 --- Toxic Effect of AS2O3 on Normal Tissues --- p.93 / Chapter 5.3 --- Summary --- p.98 / Chapter Chapter 6 --- Discussion --- p.99 / Chapter 6.1 --- Anti-tumor Effect of AS2O3 on Breast Cancer --- p.100 / Chapter 6.2 --- Induction of Apoptosis and Cell Cycle arrest by AS2O3 --- p.101 / Chapter 6.3 --- Side Effect of AS2O3 on Breast Cancer Treatment --- p.103 / Chapter Chapter 7 --- Future Perspectives --- p.105 / Chapter 7.1 --- Future Perspectives --- p.106 / References --- p.108
|
150 |
The effects of variable dose methotrexate infusion in the laboratory ratDodridge, M. E. (Miles Edward) January 1987 (has links) (PDF)
Bibliography: leaves 186-211.
|
Page generated in 0.0777 seconds