• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architectures intégrées de gestion de l'énergie pour les microsystèmes autonomes

Waltisperger, Guy 17 May 2011 (has links) (PDF)
Augmenter la durée de vie d'une pile, voire s'en passer est aujourd'hui devenu une obligation pour les microsystèmes. En effet, à cette échelle, le remplacement des piles et leur rejet dans l'environnement sont problématiques. La voie préconisée pour répondre à cet enjeu est d'utiliser des sources d'énergie renouvelables (solaire, thermique et mécanique). Pour cela, nous proposons de développer une plateforme de récupération d'énergie multi-sources/multi-charges (MANAGY) capable de s'adapter à son environnement pour en extraire le maximum d'énergie et répondre à des applications diverses. L'architecture est constituée de chemins directs et de chemins indirects où l'énergie provenant des sources est d'abord transférée dans une unité de stockage avant d'être réutilisée par les charges du microsystème. L'utilisation de cette nouvelle architecture permet d'optimiser le transfert d'énergie entre sources et charges et améliore le rendement du système de 33%. Avant de développer une architecture multi-sources, nous avons cherché à améliorer le rendement de la source photovoltaïque (PV) qui, au vu de l'état de l'art, a la densité de puissance la plus élevée. La recherche du rendement maximum de la source PV revient à la recherche du point de puissance maximum (MPPT). Il existe pour chaque condition d'irradiance, de température, et d'énergie extraites un couple tension-courant permettant à la source de fournir un maximum de puissance (MPP). Grâce à l'utilisation de deux chemins de puissance, nous arrivons simultanément à créer une boucle de régulation faible puissance agissant sur le rapport cyclique du système de gestion d'énergie (MPPT) et une boucle de régulation de la tension de sortie agissant sur le transfert de l'énergie. La modélisation du système nous a permis de spécifier ses performances. Pour atteindre les performances requises, des architectures innovantes ont été réalisées qui ont fait l'objet de trois brevets. De plus, des blocs ne sont activés qu'aux instants de changement d'état du système et sont conçus, quand cela a été possible, avec des transistors fonctionnant en mode faible inversion. Toutes ces optimisations permettent au système de fonctionner sur une large plage de variation de l'éclairement (de conditions intérieures supérieures à 500 lux à extérieures) avec un rendement proche de 90%.
2

Développement et caractérisation d’un démonstrateur de générateur thermoélectrique à base de membranes de silicium couplées à de l’ingénierie phononique / Development and characterization of a thermoelectric harvester demonstrator using phonon engineered silicon membranes

Bah, Thierno Moussa 03 July 2019 (has links)
L'essor de l'internet des objets (IoT) et des capteurs autonomes et communicants semble être retardé en raison du manque de source d’énergie fiable, sûre et à faible coût. Les récupérateurs d’énergies thermoélectriques présentent ces avantages clés. Le silicium présente les avantages d'être très abondant, moins polluant et de bénéficier d'installations et de procédés technologiques permettant la production en série de récupérateurs d’énergies thermoélectriques à faible coût par rapport aux matériaux conventionnel (alliages de tellure de bismuth). Toutefois, le silicium est un matériau thermoélectrique médiocre en raison de sa conductivité thermique élevée ( ). La possibilité de réduire la conductivité thermique tout en préservant la conductivité électrique et le coefficient Seebeck est la clé pour améliorer le silicium en tant que matériau thermoélectrique efficace. À cette fin, les efforts sont orientés vers la partie phononique du transport de chaleur, qui constitue la contribution dominante dans les semi-conducteurs. Les recherches menées au cours de cette thèse ont porté sur l'intégration des membranes de silicium nanostructurées de réseaux phononiques dans des démonstrateurs de récupérateurs d’énergies thermoélectriques et leur caractérisation au regard de l'état de l’art. Les résultats de ces études ont démontré la faisabilité d’un récupérateur d’énergie thermoélectrique à base de silicium présentant des performances (De quelques µW/cm2 pour ΔT~5-10K à quelques mW/cm2 pour ΔT>100K) suffisantes pour l’alimentation en énergie de nœuds de capteurs autonomes et des performances comparables à celles d’un récupérateur (état de l’art) à base de tellure de bismuth en fonction des conditions de refroidissement de ces derniers. De plus, cette thèse a démontré, outre la récupération d'énergie, la possibilité de développer des refroidisseurs thermoélectriques à base de silicium, ouvrant la voie à une possible intégration de refroidisseurs thermoélectriques dans des dispositifs micro-électroniques à base de silicium. / The lack of reliable, safe and low-cost energy source seems to delay the blooming of the internet of things (IoT) and wireless sensors nodes. Thermoelectric harvesters feature those key advantages. Silicon presents the advantages to be most abundant, less environmental harmful and to benefit from facilities and technological processes for low cost thermoelectric harvesters mass production compared to the conventional materials (bismuth telluride alloys). However, silicon is a poor thermoelectric material due to its high thermal conductivity ( ). The possibility to reduce the thermal conductivity while preserving electrical conductivity and Seebeck coefficient is the key to upgrade silicon as an efficient thermoelectric material. To that end, efforts are oriented towards the phononic part of heat transport, which is the dominant contribution in semiconductors. The researches carried out during this thesis dealt with the integration of phonon engineered silicon membranes into thermoelectric harvester demonstrators and their characterizations with respect to the state of the art. The results demonstrated the feasibility of a silicon based thermoelectric harvester exhibiting performance (from few µW/cm2 for ΔT~5-10K to few mW/cm2 for ΔT>100K) sufficient for autonomous sensor nodes’ power supplying and comparable performance with the bismuth telluride state of the art harvester according to the harvesters’ cooling conditions. Moreover, this thesis demonstrated, in addition to the energy harvesting, the possibility of developing silicon based thermoelectric coolers, opening the way to possible integration of thermoelectric coolers in silicon based micro-electronic devices.
3

Architectures intégrées de gestion de l'énergie pour les microsystèmes autonomes / Energy harvesting and power management for autonomous microsystems

Waltisperger, Guy 17 May 2011 (has links)
Augmenter la durée de vie d'une pile, voire s'en passer est aujourd'hui devenu une obligation pour les microsystèmes. En effet, à cette échelle, le remplacement des piles et leur rejet dans l'environnement sont problématiques. La voie préconisée pour répondre à cet enjeu est d'utiliser des sources d'énergie renouvelables (solaire, thermique et mécanique). Pour cela, nous proposons de développer une plateforme de récupération d'énergie multi-sources/multi-charges (MANAGY) capable de s'adapter à son environnement pour en extraire le maximum d'énergie et répondre à des applications diverses. L'architecture est constituée de chemins directs et de chemins indirects où l'énergie provenant des sources est d'abord transférée dans une unité de stockage avant d'être réutilisée par les charges du microsystème. L'utilisation de cette nouvelle architecture permet d'optimiser le transfert d'énergie entre sources et charges et améliore le rendement du système de 33%. Avant de développer une architecture multi-sources, nous avons cherché à améliorer le rendement de la source photovoltaïque (PV) qui, au vu de l'état de l'art, a la densité de puissance la plus élevée. La recherche du rendement maximum de la source PV revient à la recherche du point de puissance maximum (MPPT). Il existe pour chaque condition d'irradiance, de température, et d'énergie extraites un couple tension-courant permettant à la source de fournir un maximum de puissance (MPP). Grâce à l'utilisation de deux chemins de puissance, nous arrivons simultanément à créer une boucle de régulation faible puissance agissant sur le rapport cyclique du système de gestion d'énergie (MPPT) et une boucle de régulation de la tension de sortie agissant sur le transfert de l'énergie. La modélisation du système nous a permis de spécifier ses performances. Pour atteindre les performances requises, des architectures innovantes ont été réalisées qui ont fait l'objet de trois brevets. De plus, des blocs ne sont activés qu'aux instants de changement d'état du système et sont conçus, quand cela a été possible, avec des transistors fonctionnant en mode faible inversion. Toutes ces optimisations permettent au système de fonctionner sur une large plage de variation de l'éclairement (de conditions intérieures supérieures à 500 lux à extérieures) avec un rendement proche de 90%. / Enhancing the life time of battery or being able to work without it is today mandatory for microsystems. Most of systems are nowadays limited by the capacity of the embedded battery. Moreover the replacement and waste of baterries is no more possible at this scale. One way to achieve longer life time is the use of renewable energy sources (solar, thermal, or kinetic). This work proposes to develop a new energy harvesting platform with numerous sources and loads (MANAGY) able to adapt itself to the surrounding environment in order to extract the maximum of energy while answering to various of applications. The architecture is composed of directs and indirects power paths where the extracted energy coming from renewable sources is firstly transferred to a storage unit before being used by loads. This novel architecture makes it possible to optimize the energy transfer between sources and loads and to achieve a 33% gain. Before developing this architecture with numerous sources, we have searched to enhance the efficiency of the photovoltaic source which has the best power density at the state of the art. Looking for improving the efficiency of the PV source is the same as tracking the maximum power point (MPPT). There is for each irradiance, temperature and quantity of energy extracted a couple of voltage and current enabling the PV source to deliver the maximum of power (MPP). Thanks to the two power paths used we are able to create a low power feedback loop adjusting the duty cycle from the power management unit (MPPT) while having a second feedback loop optimizing the power transfer and regulating the output voltage. Thanks to a high level model we have specified the system performances. To achieve the performances required we have realized novel architectures protected through three patents. Moreover, blocs are only activated when the system changes its state and furthermore there are designs, when achievable, with transistors working in weak inversion. All these optimizations make the system working for a large range of irradiance (from inside conditions higher than 500 lux to outdoor conditions) with an efficiency close to 90%.
4

Dimensionnement énergétique de réseaux de capteurs ultra-compacts autonomes en énergie. / Energy sizing for ultra compact autonomous wireless sensor network

Todeschini, Fabien 18 February 2014 (has links)
Les capteurs sans fil ont un avenir prometteur c’est pourquoi leur développement est àl’origine de nombreuses recherches. Leur autonomie reste cependant un problème à résoudre.Les travaux de cette thèse se concentrent précisément sur cette problématique : trouverune stratégie permettant aux capteurs d’être autonomes en énergie.L’énergie nécessaire à l’alimentation du capteur, quel que soit son mode de fonctionnement,doit en effet être récupérée de l’environnement dans lequel le capteur se trouve. Deplus, en cas d’absence ou d’insuffisance d’énergie environnante, le fonctionnement du capteurdoit pouvoir perdurer. À cela s’ajoute la nécessité de connaitre à tout instant la quantitéd’énergie disponible afin de pouvoir maintenir un niveau de charge constant et ainsi prolongerla vie du capteur. Enfin, toute cette gestion de l’énergie doit pouvoir garantir le meilleurrendement possible.Cette étude a conduit à la conception et au test d’un circuit en technologie CMOS 90nm.Ce même circuit a été intégré dans les capteurs sans fil d’un réseau en cours de développement.Et enfin, une méthode permettant de connaitre le niveau d’énergie embarquée a étémise au point et pourra permettre à l’avenir la conception d’un nouveau circuit de power managementpour capteurs autonomes en énergie. / Wireless sensors have a bright future so their development is causing a lot of research.However, their autonomy is still an issue.This work focuses on this problem : find a strategy for the sensors to be autonomous.The energy required to power the sensor, whatever its working mode, must indeed be harvestedfrom the environment wherein the sensor is located. Moreover, in case of absence ora lack of available energy, the sensor has to keep working. Additionnaly the state-of-chargehas to be known in real time in order to extend the sensor lifetime. Finally, the energy managementhas to give the highest efficiency.This study led to the design and the test of a circuit in CMOS 90nm technology. Thiscircuit was integrated in wireless sensors for networks under development. Finally, a methodto estimate the level of energy in the sensor has been developed and will allow to design anew circuit of power management for wireless sensor network.
5

Design, modeling and evaluation of a thermo-magnetically activated piezoelectric generator / Conception, modélisation et évaluation d'un générateur piézoélectrique à déclenchement thermomagnétique.

Rendon hernandez, Adrian Abdala 27 September 2018 (has links)
La récupération d’énergie thermique peut être réalisée par de nombreuses techniques de transduction d’énergie. Les techniques directes de conversion d’énergie thermique en énergie électrique sont généralement les technologies les plus utilisées. Lorsque des générateurs miniaturisés son requis, des méthodes directes de conversion présentent des difficultés, y compris la nécessité des dissipateurs de chaleur volumineux ou la forte dépendance aux fluctuations de température rapides. Donc, les méthodes de conversion indirecte, comme la conversion d’énergie thermique à mécanique et puis mécanique à électrique sont présentées comme des alternatives aux récupérateurs d’énergie. Cette technologie ouvre une nouvelle ligne de recherche pour surmonter les contraintes des récupérateurs d’énergie à petite échelle. Même si leur rendement est relativement faible en raison des pertes liées aux étapes de conversion d’énergie, les générateurs d’énergie basés sur l’effet thermomagnétique présentent une densité de puissance élevée lors de leur miniaturisation. Néanmoins, peu de recherches sur la récupération d’énergie thermomagnétique à petite échelle ont été menées et aucune étude de faisabilité industrielle n’a été signalée jusqu’à présent. Ces travaux présentent la conception d’un générateur capable de convertir de faibles et de lentes fluctuations de température ambiante en électricité. L’effet thermomagnétique d’un matériau magnétique doux, à savoir l’alliage de fer et de nickel (FeNi) ainsi que la piézoélectricité sont la base de fonctionnement du dispositif. Cette thermo-magnétisation entraîne la conversion d’énergie thermique, sous la forme de fluctuations temporelles, en vibrations mécaniques d’une structure. La structure consiste en un bimorphe piézoélectrique (PZT). Le générateur a deux positions stables; la position ouverte et celle fermée. En modifiant la température de FeNi, l’interaction entre deux forces du système (forces magnétique et mécanique) amène le générateur à l’une de ses deux commutations. La température de Curie du FeNi étant proche de la température ambiante, des applications comme des dispositifs connectés portables peuvent être ciblées. Un modèle analytique est développé. Donc, une conception rapide du générateur est réalisée pour répondre aux cahiers des charges tels que: la température d’opération, la plage de températures, la réponse thermique, les capacités de conversion piézoélectrique, etc. De plus, des règles de conception ont été dérivées envers la réduction de la taille du générateur. Des modélisations par éléments finis sont développés sous ANSYS afin de valider notre modèle analytique simplifié. Ces modèles permettent aux concepteurs d’explorer d’autres matériaux et de faire des améliorations en utilisant des processus d’optimisation de la conception. Des prototypes des récupérateurs d’énergie atteignent des densités de puissance de 0.6μWcm^−3 pendant des commutations d’ouverture à 40°C et 0.02μWcm^−3 pendant des commutations de fermeture à 28°C. En réduisant la taille du générateur, des commutations d’ouverture à 31°C et des commutations de fermeture à 27°C, sont atteints. La distance initiale de séparation entre l’aimant permanent et l’alliage magnétique doux est identifiée comme une clé pour augmenter la capacité de conversion d’énergie du générateur. Un modèle équivalent électrique du générateur est développé afin de concevoir un circuit d’extraction d’énergie ainsi qu’un module de gestion d’énergie. Ce circuit est développé sous PSpice, permettant de mettre en œuvre des pertes liées aux matériaux (pertes mécaniques et diélectriques). Par le biais d’ajustement de courbe, ce modèle est capable de calculer des valeurs de pertes. Une analyse de la variabilité de la conception est réalisée afin d’explorer la faisabilité industrielle d’un tel générateur. Ainsi, la récupération d’énergie thermomagnétique peut concourir, pour la première fois, avec les thermo-générateurs les plus modernes. / Thermal energy harvesting can be realized by numerous techniques of energy transduction. Direct conversions of thermal to electrical energy are typically the most popular technologies used. When miniaturized generators are required, direct conversion methods present difficulties, including the need of bulky heat sinks or the strong dependence to rapid temperature fluctuations. Therefore, indirect conversion methods, like thermal-to-mechanical-to-electrical energy are presented as an alternative to thermal energy harvesters towards powering autonomous sensors. This disruptive technology opens up a new approach to overcome the limitations of miniaturized thermal energy harvesting systems. Even if having a relatively low efficiency due to losses linked to energy conversion steps, energy harvesters based on thermo-magnetic effect show a large power density upon miniaturization. Nevertheless, little research on thermo-magnetic energy harvesting at miniature scale has been conducted and no competitive electrical output has been reported until now.This work presents the design of a generator able to convert small and slow ambient temperature fluctuations into electricity. It exploits the thermo-magnetic effect of a soft magnetic material, namely, iron nickel alloy (FeNi) and piezoelectricity. Thermo-magnetization of FeNi is driving the conversion of thermal energy, in the form of temporal fluctuations, into mechanical vibrations of a structure. The structure consists in a piezoelectric bimorph (PZT) cantilever beam. The generator has two stable positions; open position and closed one. Curie temperature of FeNi being near to ambient temperature, applications like wearable connected devices may be targeted. By changing the temperature of the soft magnetic alloy, the interaction between counterbalance forces (magnetic and mechanical forces) leads the generator to one of its two commutations.Analytical model is developed in order to predict generator performance. Making use of this model, a rapid design of generator is conducted to fit custom requirements such as: temperature of operations, temperature range of operation, thermal response, piezoelectric energy conversion capabilities, etc.Additionally, main design rules were derived from the design parameters of the generator. Special attention was paid on how scaling down size affects the generator performance by using the analytical model.Finite element models are developed through ANSYS software in order to validate the analytical simplified model. They couple the thermal to magnetic field and then mechanical to electrical energy conversion is solved. This model allows designers to explore other materials and do improvements by using design optimization processes.First generation energy harvesting demonstrators achieve power densities of 0.6µWcm^-3 during opening commutations around 40°C and 0.02µWcm^-3 at closing commutations around 28°C. By reducing the generator’s size opening commutations at 31°C while closing commutations at 27°C are achieved. By modifying design parameters such as initial distance of separation between the permanent magnet and soft magnetic alloy is identified as a key to boost the energy conversion capability of the generator. Finally, electrical equivalent model of this thermo-magnetically activated piezoelectric generator is developed to design an energy extraction circuit and power management module. This circuit is developed in a unique software PSpice, to implement losses linked to materials (mechanic and dielectric losses). Making use of curve fitting processes, this model is able to find losses values. A variability analysis of the design is conducted by using the analytical model through Matlab in order to explore the feasibility of producing such a generator industrially. Thus, thermo-magnetic energy harvesting can compete for the first time with the state-of-the-art thermos-electrics.
6

Conception d'un système d'analyse multi-capteur ISFET pour la surveillance in-situ de l'azote minéral. Application à la culture du blé dur / Design of an ISFET-based multi-sensor analysis system for in situ monitoring of mineral nitrogen. Application to durum wheat

Joly, Matthieu 19 March 2018 (has links)
L'usage excessif de fertilisants azotés dans les pratiques agricoles modernes est préoccupant car il aboutit, entre autres, à la pollution des nappes phréatiques et à l’eutrophisation des eaux douces et marines. L’analyse du sol peut faciliter la mise en place de nouvelles pratiques agricoles qui tiennent davantage compte des variations temporelles et locales du sol et des plantes. Ces travaux visent donc le développement d’un système d’analyse in-situ, autonome et communicant pour le suivi en temps réel des teneurs en azote minéral du sol. Notre système est basé sur la technologie de microcapteur chimique en silicium lon-Sensitive Field Effect Transistor (ISFET). Une première phase de son développement a été dédiée à la fabrication de microcapteurs génériques pH-ISFET. La problématique de la détermination du pH du sol en insérant les pH-ISFET directement dans le sol a été considérée. Les résultats obtenus par cette méthode in-situ ont été comparés avec la méthode standard et nous avons examiné l’influence de paramètres propres au sol (humidité, texture, pH) et à l’ISFET (durée de vie, dérive temporelle). Dans un second temps, des puces pNH,-ISFET et pNO;-ISFET ont été obtenues en fonctionnalisant les puces génériques pH-ISFET grâce à l'intégration de membranes ionosensibles. La composition de ces membranes a été optimisée jusqu’à obtention de propriétés de détection (sensibilité, sélectivité, stabilité...) en adéquation avec les teneurs en ions ammonium et nitrates typiques des sols cultivés. Des premières caractérisations en conditions in-situ ont alors été effectuées. Finalement, les'capteurs ont été intégrés à un système permettant l’insertion des capteurs dans le sol, leur protection, l’alimentation électrique par batterie et la communication à distance des données de mesure. De premiers résultats, prometteurs, ont été obtenus. / Excessive use of nitrogen fertilizers in modern agricultural practices is a concern as it leads to groundwater pollution and eutrophication of fresh and marine waters. Soil testing can enable the introduction of new agricultural practices that take more into account temporal and local variations of soil and plants. This work therefore aims at the development of an in situ, autonomous and communicating analysis system for real-time monitoring of the mineral nitrogen contents of soils.Our system is based on the Ion-sensitive Field Effect Transistor (ISFET) microsensor technology. A first step of its development was dedicated to the fabrication of generic pH-ISFET microsensors. The problem of determining soil pH by inserting pH-ISFETs directly into the soil was considered. Results obtained by this in situ method were compared with the standard method and we examined the influence of soil ( moisture, texture, pH) and IFSET parameters (lifetime, time drift). In a second step, pNH4-ISFET and pNO3-ISFET chips were obtained by functionalizing the generic pH-ISFET chips with ionosensitive membrane. The composition of these membranes has been optimized until detection properties ( sensitivity, selectivity, stability, etc.) were in good accordance with the ammonium and nitrate ion contents of cultivated soils. Characterizations under in situ conditions were then carried out.Finally, the integration in the ground, the protection, the power supply and the remote communication of the sensors were made possible by the integration in a dedicated system. We obtained promising results.

Page generated in 0.0811 seconds