• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 15
  • 15
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SYNTHESIZING AND CHARACTERIZATION OF TITANIUM DIBORIDE FOR COMPOSITE BIPOLAR PLATES IN PEM FUEL CELL

Duddukuri, Ramesh 01 May 2012 (has links)
This research deals with the synthesis and characterization of titanium diboride (TiB2) from novel carbon coated precursors. This work provides information on using different boron sources and their effect on the resulting powders of TiB2.The process has two steps in which the oxide powders were first coated with carbon by cracking of a hydrocarbon gas, propylene (C3H6) and then, mixed with boron carbide and boric acid powders in a stoichiometric ratio. These precursors were treated at temperatures in the range of 1200-1400° C for 2 h in flowing Argon atmosphere to synthesize TiB2.The process utilizes a carbothermic reduction reaction of novel carbon coated precursor that has potential of producing high-quality powders (sub-micrometer and high purity). Single phase TiB2 powders produced, were compared with commercially available titanium diboride using X-ray diffraction and Transmission electron microscopy obtained from boron carbide and boric acid containing carbon coated precursor.
2

Carbon-coated nanoparticles and their application in high performance polymer nanocomposites

Wang, Nannan January 2018 (has links)
Shrinking down into nanoscale, materials exhibit huge property advantages over their bulk form. New forms of carbon at nanoscale have occupied the prominent position in modern materials research. With a very long history accompanying our human civilisation, carbon as a wonder material has once again contributed to our technological advances, as evidenced by the discoveries and research attractions in the last a few decades. Research into fullerenes (C60, C70, etc.), carbon nanotubes (CNTs) and graphene has been continued raising, because of the numerous novel properties associated with these new carbon forms1-3. On top of their excellent electronical, physical and chemical properties, CNTs and graphene also exhibit excellent mechanical properties including ultra-high tensile strength, Young’s Modulus, as well as high thermal conductivities. Research into carbon has also promoted the flourish of many new non-carbon nanomaterials, and typical examples include the inorganic fullerene-like tungsten disulphide (IF-WS2) nanoparticles (NPs), numerous oxide NPs and nanowires that also exhibit various remarkable properties, such as high hardness and anti-oxidation stability. To combine the outstanding performances of both carbon and non-carbon nanomaterials by marrying nanoscale carbon with various metal oxide particles, which forms the backbone of my thesis by carrying out the intensive investigations. In my project it have further validated the advantages of the resulting new carbon-coated NPs in different polymeric matrix composites. The main findings are as follows: 1. A home-made rotary chemical vapour deposit (RCVD) system has been modified and this versatile facility has been applied successfully to produce different types of graphitic carbon-coated nanocomposite particles, from micro- down to nano-scale, including IF-WS2, TiO2, ZnO, Y2O3, Cr2O3, CeO2 and ZrO2 etc. The production can be up to 30 g/per batch, which is 10s times more than using a traditional static furnace, by avoiding severe agglomeration. 2. The resulting coating consists of a few layered graphitic carbon with lattice space 0.34 nm. The thickness of the coating is simply controllable between 1-5 nm, depending on the deposition time (10~60 min), precursor injection flow rate (1.2~2.4 ml/L) and heating temperature (700~900 oC). Furthermore, the oxide core of ZnO@C was removed by heating under the H2/Ar atmosphere, and have successfully generated nano- to micro-scale, hollow, closed, and all-carbon structures. 3. The commercial Nylon 12 is applied to fabricate the metal oxide polymer composite. Using ZnO@C-Nylon 12 composite as an example, at 2 wt% content, the composites have achieved with the ultimate tensile strength increased by 27% (from 47.9 to 59.6 MPa), In particular, at 4 wt% content, the ZnO@C showed an impressive improvement in thermal conductivity of nearly 50% (From 0.21 t0 0.31 W∙m-1∙K-1), comparing 16% improvement for ZnO-Nylon 12 composite. 4. Apart from investigations of nylon composite, intensive studies of the Poly ether ether ketone (PEEK), an important high performance engineering thermoplastics polymer, and its nanocomposites reinforced by IF-WS2 and IF-WS2@C have been carried out in this thesis. The IF-WS2/PEEK composites exhibited not only an improvements of 24% (From 77.6 to 96.7 MPa) in the tensile strength (2 wt%), but also showed an extraordinary increase in thermal conductivity by 190%, from 0.248 to 0.719 W∙m-1∙K-1 at 8 wt%, higher onset decomposing temperatures (54 oC) against the plain PEEK. 5. Moreover, owing to the better dispersal capacity of IF-WS2@C NPs, the ternary IF-WS2@C-PEEK nanocomposites produced in this thesis displayed impressive mechanical properties, increased by 51% (From 77.6 to 120.9 MPa, at 2 wt%), and extremely greater thermal conductivity, with 235% (From 0.248 to 0.831 W∙m-1∙K-1 at 8 wt%), and better stability than the comparison IF-WS2-PEEK composites. The parameters influencing the coating quality and thickness have also been investigated. Further, their interface studies based on the FTIR and XPS techniques have verified the formation of chemical bonding (C=S bonding and carbon π-π bonding), rather than physically bonded together. The successful application of the generic RCVD process can be further extended to the processing of many new particles for an ultrathin carbon coating. Considering the vast amount of literature focusing on carbon, the project further processing of carbon-coated materials in composites could easily be tailored to achieve desired surface contacts with different matrices and leading to the better desired performance, as verified in this thesis for the advanced binary and ternary composites. Finally, this research is expecting to expand the application potentials of PEEK-based nanocomposites in critical areas where thermal conductivity and thermal stability are important.
3

Wear resistant low friction coatings for engine components

Lindholm, Per January 2004 (has links)
Engine development today is driven by cost, performance and government regulations. Customers want cars and trucks to consume less fuel, last longer, pollute less and be safer. Several of the requirements have tribological associations. For example, product longevity can be improved by lowering friction and using more wear-resistant components. In recent decades, the use of new coating application procedures and techniques has produced remarkably advances in relation to cutting tools. The process temperature at which coatings are applied has been lowered to below 200 oC. Thus it is now possible to coat low-alloy temper-sensitive steels, which are widely used in the automotive industry in machine elements such as gears, bearings and cam followers. The aim of this work has been to investigate the possibility of using sputtered amorphous carbon coatings to reduce friction and prevent wear in engine components, and specifically in valve train components. Test equipment simulating near-normal running conditions for the valve mechanism has been developed and used to test standard and coated valve components. The mechanism has also been analysed and simulated numerically. The results show a low velocity difference between the injector cam lobe and the roller, except for a short interval at the top dead centre of the rocker arm. In that region the slip increases significantly at higher speeds due to inertial forces. A three-dimensional finite element parameter study of the coating thickness, elastic modulus, asperity contact size and wavelength has shown that tensional stresses at the coating surface increase significantly when asperity contacts approach and interact. Testing of different thicknesses in rolling contact, together with finite element stress analysis, showed that a higher tensional stress level through the coating thickness increases the possibility of cracks propagating down to the interlayer and causing delamination of the coating. Tests with a rapid load increase on two carbon coatings show no transition from mild to more severe wear. Instead the contact is dimensioned by the plastic deformation of the underlying substrate.
4

Wear resistant low friction coatings for engine components

Lindholm, Per January 2004 (has links)
<p>Engine development today is driven by cost, performance and government regulations. Customers want cars and trucks to consume less fuel, last longer, pollute less and be safer. Several of the requirements have tribological associations. For example, product longevity can be improved by lowering friction and using more wear-resistant components. In recent decades, the use of new coating application procedures and techniques has produced remarkably advances in relation to cutting tools. The process temperature at which coatings are applied has been lowered to below 200 oC. Thus it is now possible to coat low-alloy temper-sensitive steels, which are widely used in the automotive industry in machine elements such as gears, bearings and cam followers. </p><p>The aim of this work has been to investigate the possibility of using sputtered amorphous carbon coatings to reduce friction and prevent wear in engine components, and specifically in valve train components. Test equipment simulating near-normal running conditions for the valve mechanism has been developed and used to test standard and coated valve components. The mechanism has also been analysed and simulated numerically. The results show a low velocity difference between the injector cam lobe and the roller, except for a short interval at the top dead centre of the rocker arm. In that region the slip increases significantly at higher speeds due to inertial forces. </p><p>A three-dimensional finite element parameter study of the coating thickness, elastic modulus, asperity contact size and wavelength has shown that tensional stresses at the coating surface increase significantly when asperity contacts approach and interact. Testing of different thicknesses in rolling contact, together with finite element stress analysis, showed that a higher tensional stress level through the coating thickness increases the possibility of cracks propagating down to the interlayer and causing delamination of the coating. Tests with a rapid load increase on two carbon coatings show no transition from mild to more severe wear. Instead the contact is dimensioned by the plastic deformation of the underlying substrate.</p>
5

Study of Pt-based Catalysts for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells by operando X-ray Absorption Spectroscopy / オペランドX線吸収分光法による固体高分子型燃料電池における酸素還元反応用のPt系触媒の研究

Gao, Yunfei 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第25386号 / 人博第1128号 / 新制||人||262(附属図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 藤田 健一, 教授 高木 紀明, 教授 竹口 竜弥 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
6

In Vitro Molecular Modification of Human Cultured and Primary Cells Using Lance Array Nanoinjection

Sessions, John W 01 March 2016 (has links)
Fundamentally altering cellular function at a genetic level is a major area of interest in the biologic sciences and the medical community. By engineering transfectable constructs that can be inserted to dysfunctional cellular systems, scientists can mitigate aberrant genetic behavior to produce proper molecular function. While viral vectors have been a mainstay in the past, there are many limitations, particularly related to safety, that have changed the focus of genome editing to incorporate alternative methods for gene delivery. Lance Array Nanoinjection (LAN), a second-generation microfabricated transfection biotechnology, is one of these alternative technologies. LAN works by utilizing both simultaneous electrostatic interaction with molecular loads and physical lancing of hundreds of thousands of target cell membranes. The purpose of this work is to demonstrate LAN in the context of in vitro transfection of immortalized culture cells and primary cells. As part of that exploration, three distinct areas of investigation are considered, which include: characterizing environmental factors that impact LAN transfection, demonstrating LAN genetic modification of immortalized HeLa 229 culture cells using an indicator marker, and lastly, investigating the effects of LAN on human primary, neonatal fibroblasts.
7

Aqueous Rechargeable Batteries with High Electrochemical Performance

Liu, Yu 07 August 2017 (has links) (PDF)
Mit der Entwicklung der Weltwirtschaft steigt der Energieverbrauch weiterhin stark an. Darüber hinaus reduzieren sich die nicht erneuerbaren Energiequellen, wie Öl, Erdgas und Kohle und die Umweltverschmutzung wird größer. Daher soll die Energienutzung in eine neue, erneuerbare und umweltfreundliche Richtung gehen. Die Arbeit hat zum Ziel innovative, wässrige Akkumulatoren zu entwickeln. Im Allgemeinen können wässrige Akkumulatoren gemäß der Elektrolyte in drei verschiedenen Kategorien eingeteilt werden. Es gibt feste, organische und wässrige Elektrolyte einschließlich saurer, alkalischer und neutraler. In Bezug auf metallbasierte negative Elektroden können sie auch als Lithiumbatterie, Natriumbatterie sowie Magnesiumbatterie etc. bezeichnet werden. Daher werden im ersten Kapitel einige typische Akkumulatoren, wie die Lithiumionenbatterien, Daniell-Element, Weston-Zelle, Nickel-Cadmium-Batterie und Bleibatterie vorgestellt. Im Vergleich zu organischen Elektrolyten wurden wässrige Akkumulatoren aufgrund ihrer billigen, leichten und sicheren Bauweise in den letzten Jahren umfassend untersucht. Zusätzlich dazu ist die ionische Leitfähigkeit von wässrigen Elektrolyten um zwei Größenordnungen höher als die von organischen Elektrolyten. Dies garantiert eine hohe Entladungsrate für wässrige wiederaufladbare Batterien. Somit bieten wiederaufladbare Batterien potentielle Anwendungen in der Energiespeicherung und -umwandlung. Allerdings verursachen starke Säuren oder Basen, die als Elektrolyte für sekundäre Batterien eingesetzt werden, eine starke Korrosion. Somit wären neutrale wässrige Elektrolyten (oder Elektrolytlösungen) mit einem pH-Wert in der Nähe von sieben, wie zum Beispiel schwach basisch oder sauer, die beste Wahl für wässrige Akkumulatoren. Aktive Elektrodenmaterialien der Batterien, die hochgiftige Schwermetalle wie Blei, Quecksilber und Cadmium enthalten, belasten die Umwelt. Um die Menge an Schwermetallen und Säure (oder Basen) zu verringern, sowie die spezifische Kapazität von Batterien zu erhöhen, untersucht diese Dissertation vor allem die elektrochemische Leistung der PbSO4/0,5M Li2SO4/LiMn2O4-Zelle, der Cd/0,5M Li2SO4+10mM Cd(Ac)2/LiCoO2-Zelle und von C/Cu/CNT-Gemischen als negative Materialien in 0,5 M K2CO3–Elektrolyt-Halbzellen. Die zugehörigen experimentellen Ergebnisse werden wie folgt zusammengefaßt: Im Kapitel 3 wurde eine säurefreie Bleibatterie auf Basis des LiMn2O4-Spinells als positive Elektrode, PbSO4 als negativer Elektrode und der wässrigen Lösung von 0,5 M Li2SO4 als Elektrolyt zusammengesetzt. Die spezifische Kapazität auf Basis von LiMn2O4 beträgt 128 mA•h•g-1 und die durchschnittliche Entladungsspannung beträgt 1,3 V. Die berechnete Energiedichte ist 68 W•h•kg-1, bezogen auf die praktischen Kapazitäten der beiden Elektroden. Diese Ergebnisse zeigen, dass die positive Elektrode der Bleibatterie (PbO2) vollständig durch umweltfreundliches und billiges LiMn2O4 ersetzt werden kann, wodurch 50 % des Bleis eingespart werden können. Außerdem wird Schwefelsäure nicht benötigt. Kapitel 4 zeigt eine wässrige wiederaufladbare Lithiumionenbatterie, die metallisches Cadmium als negative Elektrode, LiCoO2-Nanopartikel als positive Elektrode und eine wässrige, neutrale Lösung von 0,5 M Li2SO4 und 10 mM Cd(Ac)2 als Elektrolyt enthält. Die durchschnittliche Entladungsspannung beträgt 1,2 V und die spezifische Entladungskapazität beträgt 107 mA•h•g-1 auf Basis von LiCoO2. Die berechnete Energiedichte beträgt 72 W•h•kg-1, bezogen auf die praktischen Kapazitäten der beiden Elektroden. Wie bereits oben beschrieben demonstrieren die Ergebnisse, dass 100 % von Quecksilber und der alkalischen Elektrolyt im Vergleich zur Weston-Zelle bzw. der Ni-Cd-Batterie, eingespart werden können. Kapitel 5 zeigt einen Verbundwerkstoff von Kupfer, das auf der Oberfläche von CNTs durch eine Redoxreaktion zwischen Kupferacetat und Ethylenglykol, zur Verwendung als negative Elektrode bei hohen Strömen in der Energiespeicherung, hergestellt wurde. Der so hergestellte C/Cu/CNT-Verbundwerkstoff zeigt ein besseres Geschwindigkeitsverhalten und eine höhere Kapazität ebenso wie eine exzellente Zyklusstabilität in wässrigen 0,5 M K2CO3-Lösungen im Vergleich zu einfachem Kupfer. Die Kohlenstoffbeschichtung kann die Auflösung von Kupfercarbonatkomplexen verhindern, die Elektrodenleitfähigkeit erhöhen und die Oberflächenchemie des aktiven Materials verbessern. / With the economic development of the world, energy consumption continues to rise sharply. Moreover, non-renewable energy sources including fossil oil, natural gas and coal are declining gradually and environmental pollution is becoming more severe. Hence, energy usage should go into a new direction of development that is renewable and environmental-friendly. This thesis aims to explore innovative aqueous rechargeable batteries. Generally, rechargeable batteries could be classified into three categories according to the different electrolytes. There are solid electrolytes, organic electrolytes and aqueous electrolytes including acidic, alkaline and neutral. In terms of metal-based negative electrodes, they also could be named lithium battery, sodium battery as well as magnesium battery etc. Therefore, some typical rechargeable batteries are introduced in Chapter 1, such as lithium ion batteries, Daniell-type cell, Weston cell, Ni-Cd battery and lead-acid battery. Compared to organic electrolytes, aqueous rechargeable batteries have been investigated broadly in recent years because they are inexpensive, easy to construct and safe. Additionally, the ionic conductivity of aqueous electrolytes is higher than that of organic electrolytes by about two orders of magnitude. Furthermore, it ensures high rate capability for aqueous rechargeable battery. Consequently, aqueous rechargeable batteries present potential applications in energy storage and conversion. However, strong acid or alkaline, which is used as the electrolyte for secondary batteries, will cause serious corrosion. Thus, neutral aqueous electrolyte (or pH value of electrolyte solution close to 7 such as weak alkaline and acid) would be the best choice for aqueous rechargeable battery. In addition, the electrode active materials of batteries containing highly toxic heavy metals such as Pb, Hg and Cd, pollute the environment. As a result, in order to reduce the amount of heavy metals and acid (or alkaline) as well as increase the specific capacity of batteries, this dissertation mainly studies the electrochemical performance of PbSO4/0.5M Li2SO4/LiMn2O4 full battery, Cd/0.5M Li2SO4+10 mM Cd(Ac)2/LiCoO2 full battery and C/Cu/CNT composites as negative material in 0.5 M K2CO3 electrolyte as half cell. The related experimental results are as follows: In Chapter 3, an acid-free lead battery was assembled based on spinel LiMn2O4 as the positive electrode, PbSO4 as the negative electrode, and 0.5 M Li2SO4 aqueous solution as the electrolyte. Its specific capacity based on the LiMn2O4 is 128 mA•h•g-1 and the average discharge voltage is 1.3 V. The calculated energy density is 68 W•h•kg-1 based on the practical capacities of the two electrodes. These results show that the positive electrode of the lead acid battery (PbO2) can be totally replaced by the environmentally friendly and cheap LiMn2O4, which implies that 50 % of Pb can be saved. In addition, H2SO4 is not needed. Chapter 4 shows an aqueous rechargeable lithium ion battery using metallic Cd as the negative electrode, LiCoO2 nanoparticles as the positive electrode, and an aqueous neutral solution of 0.5 M Li2SO4 and 10 mM Cd(Ac)2 as the electrolyte. Its average discharge voltage is 1.2 V and the specific discharge capacity is 107 mA•h•g-1 based on the LiCoO2 . In addition, the calculated energy density based on the capacities of the electrodes is 72 W•h•kg-1. As described above, the results demonstrate that 100 % of Hg and alkaline electrolyte can be saved compared with the Weston cell and the Ni-Cd battery, respectively. The work reported in Chapter 5 deals with a composite of copper grown on the surface of CNTs as prepared by a redox reaction between copper acetate and ethylene glycol for use as negative electrode at high currents in energy storage. The as-prepared C/Cu/CNTs composite exhibits better rate behavior and higher capacity as well as excellent cycling stability in aqueous 0.5 M K2CO3 solution compared to the unsupported copper. The carbon coating can effectively prevent the dissolution of copper carbonate complexes, increase the electrode conductivity, improve the surface chemistry of the active material and protect the electrode from direct contact with electrolyte solution.
8

Synthèse du LiXFePO4 par voie fondue et l’étude de la couche de carbone sur LiFePO4

Dahéron, Benjamin 03 1900 (has links)
Le LiFePO4 est un matériau prometteur pour les cathodes des batteries au lithium. Il possède une bonne stabilité à haute température et les précurseurs utilisés pour la synthèse sont peu couteux. Malheureusement, sa faible conductivité nuit aux performances électrochimiques. Le fait de diminuer la taille des particules ou d’enrober les particules d’une couche de carbone permet d’augmenter la conductivité. Nous avons utilisé une nouvelle méthode appelée « synthèse par voie fondue » pour synthétiser le LiFePO4. Cette synthèse donne des gros cristaux et aucune impureté n’est détectée par analyse Rayon-X. En revanche, la synthèse de LiXFePO4 donne un mélange de LiFePO4 pur et d’impureté à base de lithium ou de fer selon l’excès de fer ou de lithium utilisé. La taille des particules de LiFePO4 est réduite à l’aide d’un broyeur planétaire et plusieurs paramètres de broyage sont étudiés. Une couche de carbone est ensuite déposée sur la surface des particules broyées par un traitement thermique sur le LiFePO4 avec du -lactose. L’influence de plusieurs paramètres comme la température du traitement thermique ou la durée du chauffage sont étudiés. Ces expériences sont réalisées avec un appareil d’analyse thermogravimétrique (ATG) qui donne la quantité de chaleur ainsi que la variation de masse durant le chauffage de l’échantillon. Ce nouveau chauffage pour la couche de carbone donne des échantillons dont les performances électrochimiques sont similaires à celles obtenues précédemment avec la méthode de chauffage pour la couche de carbone utilisant le four tubulaire. / LiFePO4 is a promising cathode material for Lithium-ion batteries. It provides high thermal stability and is synthesized using low cost materials. Unfortunately LiFePO4 suffers from a low electrical conductivity, which is harmful to its electrochemical performance. Decreasing the particle size or coating the particles with carbon increases the conductivity of the material. We have used a new synthetic method called molten synthesis to synthesize LiFePO4. The molten synthesis produces large crystals of LiFePO4 with no impurity detected via X-ray diffraction analysis. Moreover, the synthesis of LiXFePO4 gives a mixture of pure LiFePO4 and Li-based impurities or LiFePO4 and Fe-based impurities whenever there is an excess of lithium or iron used. The particle size of the synthesized material is reduced via a Planetary Mill and numerous milling parameters were investigated. A carbon coating was then deposited on the surface of the milled material by thermally treating LiFePO4 with β-lactose. The influences of several parameters such as heat treatment temperature and/or heating duration were studied. These experiments were performed using a thermogravimetric analysis (TGA), which provides the amount of heat and weight change during the heating of the sample. This new heating method for carbon coating gave rise to samples with similar electrochemical performance data as to the previously established heating method involving a tubular furnace.
9

Tribologie du Ti-6AI-4V et d'un revêtement DLC en fretting : applications au contact tige/col dans les prothèses de hanches modulaires / Tribology of Ti-6AI-4V and DLC coating in fretting : applications to stem/neck contact of modular hip implant

Ding, Haohao 24 October 2018 (has links)
L’utilisation d’un col modulaire lors de la pose d’une prothèse totale de hanche introduit une nouvelle interface, entre la tige et le col, qui est susceptible de s’endommager par fretting lors de la marche. L’alliage Ti–6Al–4V est très largement utilisé pour les tiges et les cols. Cependant, les contacts Ti–6Al–4V / Ti–6Al–4V présentent un frottement élevé et une forte usure adhésive dans les conditions de fretting. Les revêtements DLC (diamond-like carbon) ont été largement utilisés comme revêtements protecteurs pour les pièces métalliques. Ainsi, ils peuvent être introduits dans les contacts entre la tige en Ti–6Al–4V et le col en Ti–6Al–4V. L’objectif de cette thèse est d’étudier les comportements tribologiques du revêtement DLC et de l’alliage Ti–6Al–4V dans les conditions de fretting pour application au contact entre la tige et le col. Les essais de fretting sont menés avec un contact cylindre sur plan sous différentes valeurs d’amplitude de déplacement (± 20 μm, ± 40 μm, et ± 70 μm) et de force normale (entre 200 N et 1 200 N). En outre, les effets de différents revêtements (DLC A et DLC B), différentes rugosités de surface (lisse et rugueuse), différentes positions de revêtement (revêtement sur le plan, sur le cylindre et sur les deux surfaces), différents environnements (dans l’air et dans le sérum de veau) sont analysés. Par ailleurs, l'origine du faible frottement du contact entre Ti–6Al–4V et revêtement DLC est explorée. Les propriétés mécaniques du tribofilm formé sur la surface de Ti–6Al–4V frottée sont également étudiées.Pour les tests de fretting sans revêtement (contact Ti–6Al–4V / Ti–6Al–4V) dans l’air, le coefficient de frottement est élevé, entre 0.8 et 1.2. Le volume d’usure croît avec l’amplitude de déplacement. Pour les tests avec revêtement, le Ti–6Al–4V peut être bien protégé, sous des charges relativement faibles. Le coefficient de frottement (d’environ 0,2) et le volume usé sont faibles. Sous fortes charges, le revêtement est presque totalement éliminé. Le frottement et le volume d'usure sont similaires à ceux des essais sans revêtement. Le revêtement plus dur (DLC A) a de meilleures propriétés tribologiques que le DLC B. Le revêtement sur la surface lisse présente une meilleure performance en fretting que sur la surface rugueuse. Le revêtement sur une surface cylindrique présente une meilleure performance tribologique que sur une surface plane. Le revêtement DLC est plus endommagé lorsqu'il glisse contre un revêtement DLC que contre du Ti–6Al–4V non revêtu. Le revêtement fonctionne mieux en présence de sérum que dans l’air. Un tribofilm est formé sur la surface de Ti–6Al–4V frottée lorsqu'il glisse contre un revêtement DLC sous de faibles charges. Le tribofilm présente une dureté plus élevée, un module de Young plus élevé, un module de compression plus élevé, une limite d'élasticité plus élevé que l’alliage Ti–6Al–4V. Un modèle tribologique est proposé pour la formation du tribofilm et l'explication de l'origine du faible frottement, par une analyse approfondie des surfaces de contact, sur les points de vue mécaniques et chimiques. / The use of modular neck adapter when placing a total hip prosthesis introduces a new interface, between the femoral stem and the neck adapter, which is propitious to fretting damage during walking. Ti–6Al–4V alloy has been widely used in neck adapters and femoral stems. However, the Ti–6Al–4V / Ti–6Al–4V contacts present high friction and severe adhesive wear under fretting conditions. Diamond-like carbon (DLC) coatings have been widely used as protective coatings for metallic parts. Thus, they can be introduced into Ti–6Al–4V neck adapter / Ti–6Al–4V femoral stem contacts.The objective of this thesis is to investigate the tribological behaviors of DLC coating and Ti–6Al–4V alloy under fretting conditions for application to neck adapter / femoral stem contact. Fretting tests are conducted with a cylinder / flat contact under different values of displacement amplitude (±20 µm, ±40 µm, and ±70 µm) and normal force (between 200 N and 1 200 N). Furthermore, the effects of different DLC coatings (DLC A and DLC B), different surface roughness (smooth and rough), different coating positions (coating on the flat, on the cylinder, and on both surfaces), different environments (laboratory air and calf serum) are analyzed. Besides, the origin of low friction of Ti–6Al–4V / DLC coating contact is explored. The mechanical properties of tribofilm formed on the rubbed Ti–6Al–4V surface is studied.For fretting tests without coating (Ti–6Al–4V / Ti–6Al–4V contact) under laboratory air condition, the friction coefficient is high, between 0.8 and 1.2. The wear volume increases with the displacement amplitude. For fretting tests with coating, Ti–6Al–4V can be well protected under relatively low load conditions. The friction coefficient is low (around 0.2) and the wear volume is small. Under high load conditions, the coating is almost totally removed. The friction and wear volume are similar to tests without coating. The harder coating (DLC A) has better tribological property than DLC B. The coating on the smooth surface exhibits better fretting performance than on the rough surface. Coating on a cylindrical surface shows better tribological performance than on a flat surface. The DLC coating is damaged more severely when it slides against a DLC coating than against the uncoated Ti–6Al–4V alloy. The coating performs better under the serum condition than under the laboratory air condition. A tribofilm is formed on the rubbed Ti–6Al–4V surface when sliding against a DLC coating under low load conditions. The tribofilm shows higher hardness, higher Young’s modulus, higher compression modulus, higher yield strength than the Ti–6Al–4V alloy. A tribological model is proposed for tribofilm formation and explanation of origin of low friction, by in-depth analysis of contact surfaces, on mechanical and chemical points of view.
10

MOCVD Of Carbonaceous MnO Coating : Electrochemical And Charge Transport Studies

Varade, Ashish 11 1900 (has links)
Metalorganic Chemical Vapour Deposition (MOCVD) is a versatile technique for the deposition of thin films of oxide materials as it offers advantages, such as deposition over large surface area, conformal coverage, selective area deposition, and a high degree of compositional control. The MOCVD process uses metalorganic (MO) complexes, such as β-diketonate and alkoxide-based complexes, as precursors. These complexes are stable and moderately volatile. Because of the direct bond between metal and oxygen, MO complexes are natural precursors for oxide coatings. As the process involves chemical reactions taking place on the substrate surface, growth of thin films by MOCVD depends on various parameters such as the chemical nature and concentration of precursors, reaction pressure, reaction temperature, and the nature of the substrate. Such a large parameter space of the CVD process, when combined with the dynamics (thermodynamics and fluid dynamics) and kinetics, makes it rather complex. This complexity allows one to make thin films of metastable phases, including amorphous materials. One of the important findings of the work is that MOCVD process is capable of making composite coatings of carbonaceous metal oxide. Manganese is multivalent and forms various stable oxides, such as MnO, Mn2O3, Mn3O4 and MnO2. There are various potential applications of manganese oxides. MnO2 is a very well studied material for its electrochemical applications in dry cells, lithium-ion batteries, and in supercapacitors. Hence, it becomes pertinent to explore the properties of thin films of manganese oxides prepared by MOCVD for various electrochemical and other applications. The thesis work is divided into two parts. Part 1 describes the synthesis of manganese complexes, their characterization, and their application to the CVD of coatings, especially those of carbonaceous MnO. Part 2 is devoted to a detailed study of electrochemical aspects of the carbonaceous MnO coatings, followed by a report on their unusual transport properties. Chapter 1 begins with a brief introduction to thin film deposition processes. In particular, the CVD process is described with reference to various parameters such as carrier gas flow, pressure, temperature and most importantly, the CVD precursor. The chapter ends with a description of the scope of the work undertaken for the present thesis. Chapter 2 deals with “Synthesis and Characterization of MO complexes”. It begins with a description of the classification of CVD precursors with the description of MO complexes such as β-diketonates, which are generally subliming crystalline solids. Manganese β-diketonate complexes are discussed in detail. Due to the multivalent nature of Mn, there are two possible complexes namely Mn(acac)2(H2O)2 and Mn(acac)3. These complexes have been synthesised and characterized (confirmed) by various techniques, such as elemental analysis (CHN), X-ray diffraction (XRD), FTIR spectroscopy, and mass spectroscopy. Thermal analysis of the complexes shows that they are suitable as MOCVD precursors. We have used Mn(acac)2(H2O)2 as a precursor in the present work. Metalorganic complexes, where metal ion is directly bonded with both nitrogen and oxygen, can be potential candidates for the precursor for oxynitrides coatings. We have therefore studied solid crystalline anthranilate complexes of various metal ions, such as Mn2+, Co2+, Cu2+ and Zn2+ and confirmed their formation. Thermal analysis shows that anthranilate complexes are fairly volatile below 250oC and decompose below 500oC. These complexes were pyrolysed in open air and in sealed tube at different temperatures, and the resulting powder product examined by XRD, SEM, EDAX and FTIR. This preliminary study shows that anthranilate complexes yield different oxides of Mn, Co and Cu under different pyrolysis conditions, with very interesting morphological features. Pyrolysis of Zn(aa)2 in a sealed tube leads to the formation of a nanocomposite of carbon and zinc oxide (wuerzite), rich in carbon, with potential for applications in catalysis. On the other hand, the pyrolysis of Zn(aa)2 in air at the same temperature leads to leads to crystalline, nanostructured zinc oxide (wuerzite). However, no attempt has been made to use these anthranilates as CVD precursors. Chapter 3 deals with “MOCVD of Manganese Oxides and their Characterization”. It begins with a brief review of various manganese oxides and their properties. This is followed by description of the CVD reactor used for the present work, together with the conditions employed for the deposition of MnOx films. Depositions have been carried out on different substrates such as SS-316, ceramic alumina and Si (111), while varying various deposition parameters, viz., substrate, reactor pressure, carrier gas (argon) flow rate, and the duration of deposition. Significantly, depositions are divided into two categories: one, carried out in argon ambient, in the absence of a supply of oxygen (or any other oxidant) and the second one, under oxygen flow, using argon as carrier gas. The films deposited in the absence of oxygen flow are thick, black in colour, and electrically conducting, indicating the presence of carbon. The growth rate follows a typical thermal pattern, with activation energy of ~ 1.7 eV. Detailed characterization by XRD, TEM/ED, Raman, FTIR and XPS (X-ray photoelectron spectroscopy) shows that these films are composed of MnO in a carbon-rich amorphous matrix. High-resolution SEM (fig. 1) reveals a fractal pattern of cauliflower morphology, comprising very fine particles (4 – 10 nm), characteristic of very large specific surface area of the film, which is confirmed by volumetric BET measurement (~2000 m2/g). We conclude that growth in argon ambient leads to a homogenous nanocomposite film of hydrated MnO in carbon-rich matrix. Thus, our study reveals that MOCVD is a novel one-step chemical method to produce homogenous composite thin films, wherein all components of the nanocomposite film emerge from the same chemical precursor. Carbon incorporation is generally avoided by empirical process design, as it is viewed as an impurity. The potential advantages of carbon incorporation are thus not examined and the composite nature of carbonaceous films not recognized in the literature. Carbonaceous nanocomposite film can be significant as an electrode in supercapacitors, as discussed in part 2 of the thesis. Chapter 3 describes films deposited under oxygen flow, which are no longer black and are highly resistive, indicating the absence of carbon in the film, as confirmed by Raman spectroscopy. XRD, FTIR and Raman spectroscopy reveal that the films obtained under oxygen flow are more crystalline than the ones obtained in the absence of oxygen flow, and that the films are generally nanocrystalline composites of two manganese oxides, such as MnO and Mn3O4. Given the context of the carbonaceous MnO films described above, chapter 4 begins with a review of electrochemical capacitors (also called supercapacitors or ultracapacitors), which are emerging as important energy storage devices. Until now, in the Mn-O system, hydrated MnO2 has been well-studied as an electrode material due to its low cost and environmental compatibility, but the low electrical conductivity of MnO2, together with irreversible redox reactions, reduces its performance. In electrochemical capacitor applications, metal-oxide/carbon composites are finding importance. Chapter 4 deals with “MnO/C Nanocomposite Coatings as Electrodes for Electrochemical Capacitor”. In this chapter, we have examined the novel EM, i.e., the hydrated MnO/C nanocomposite coating prepared by the MOCVD process on a conducting substrate (current collector) such as SS-316 as an electrode. Electrochemical measurements have been carried out for both the 3-electrode assembly (for basic aqueous electrolyte) and 2-electrode assembly (for gel polymer electrolyte) using cyclic voltammetry (CV), AC impedance and charge-discharge techniques. The studies lead to a maximum specific capacitance of 230 – 270 F/g at 1 mA/cm2 discharge current density for the MnO/C nanocomposite coating grown at 680oC. The Bode plot shows a maximum phase angle of around 74 – 82o, indicating capacitive behaviour. The MnO/C nanocomposite film shows a very small time constant (0.5 – 3 msec), which is good for high frequency applications. The pulse power figure of merit is found to be 650 – 2000 W/g. Capacitance determined for a large number of charge-discharge cycles (~20000), and at large current densities (50 mA/cm2) show promising results. The energy density (5 - 32 Wh/kg) and power density (2 – 4 kW/kg) estimated from charge-discharge data at 1 mA/cm2 shows the potential of the nanocomposite MnO/C as electrode for superior capacitor devices. Gel polymer electrolytes (GPE) offer the advantage of large electrochemical potential window due to its structural and chemical stability. Studies have been carried out to show that the MnO/C nanocomposite film is compatible with gel polymer electrolytes based on poly(methyl methacrylate) (PMMA) and poly(acrylonitrile) (PAN) with salts of magnesium triflate and magnesium perchlorate, respectively) and plasticizers (ethylene carbonate (EC) + propylene carbonate (PC)), in a 2-electrode assembly. Chapter 5 deals with “Magnetoconductance in MnO/C Nanocomposite Coatings on Alumina”. Amorphous systems, such as MnO/C composites wherein carbon is amorphous and MnO is nearly so, are highly symmetric condensed phases, which do not possess long range translational or orientational order. Disorder in the system creates Anderson localized states just above the valence band, which lead to reduced electrical conductivity. Amorphous systems show either a small negative magnetoresistance (~ 5%) or a small positive magnetoconductance (~ 7%) at very low temperatures (~ 10 K). As such, the transport properties of the MnO/C nanocomposite film have been investigated, and are reported in chapter 5. Transport and magnetotransport measurements have been made on the MnO/C nanocomposite film grown on alumina. It is found that the MnO/C nanocomposite coating exhibits a giant negative MR (22.3%) at a temperature as high as 100 K, which is unusual because pure MnO is anti-ferromagnetic and does not ordinarily show any magnetoresistance (MR), while amorphous carbon is known to show a small MR at very low temperatures (~7 K), due to weak-localization. The present results mean that a mechanism other than weak-localization plays a role in this nanocomposite material. Further study of this material is called for, which can perhaps lead to giant magnetoresistance (GMR) at room temperature in a metal-oxide/carbon nanocomposite. A summary of the work and an outlook for further research are given in the concluding chapter 6.

Page generated in 0.0765 seconds