• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Metal Organic Frameworks for Surface Organometallic Chemistry and Carbon Conversion

Thiam, Zeynabou 05 1900 (has links)
Abstract: Metal-Organic Frameworks (MOFs) are a class of highly porous, hybrid, functional and crystalline extended coordination compounds. Their exceptional properties renders them ideal for a wide range of applications including gas storage and catalysis. Especially for catalysis, MOFs are receiving attention as well-defined supports for organometallic heterogeneous catalysis with noticeably the post-synthetic grafting of transition metal complexes on secondary building units (SBU) containing hydroxides moieties. The objective of this dissertation is to explore the synthesis, reactivity and functionalization of MOFs with SBU containing hydroxides units by transition metal catalyst using the Surface Organometallic Chemistry (SOMC) approach. Chapter 1, gives an introduction to the field of MOF and their applications to catalysis through the functionalization of hydroxide containing SBUs. This chapter introduces also the SOMC strategy with an overview of its catalytic application for olefin metathesis and CO2 conversion. Chapter 2 and 3 give a detailed application of SOMC to MOFs with the selective grafting of the W(≡CtBu)(CH2tBu)3 complex on the highly crystalline and mesoporous Zr-NU-1000 MOF. The obtained single site material, Zr-Nu-1000-W, is fully characterized using state of the art experimental methods and all the steps leading to the final grafted moieties were identified by DFT. Zr-NU-1000-W is active for olefin metathesis and is further fine-tuned by activation with EtAlCl2 giving a more selective and stable catalyst. Moreover, the nature of the grafted species could be modulated by pre-activation of the initial W(≡CtBu)(CH2tBu)3 complex with dmpe giving W(≡CtBu)(=CHtBu)(CH2tBu)(dmpe) also grafted on Zr-NU-1000. Chapter 4 and 5, describe the deliberate design and bulk synthesis of a new zirconium MOF, Zr-she-MOF-2, and highlight the discovery of a new highly connected MOF, RE-urx-MOF-1, based on a careful combination of rare earth (RE) metals with heterobifunctional triangular tetrazolate-based ligand. Additionally, the replacement of the tetrazolate functionality by carboxylate, leads to the formation of a different MOF structure RE-gea-MOF-4 having the gea topology with the presence of 18-connected nonanuclear RE cluster. Both Zr-she-MOF-2 and RE-gea-MOF-4 are active for the coupling of epoxides with CO2 to form cyclic carbonate in the presence of Bu4NBr. Finally, Chapter 6 will discuss the conclusions and perspectives of this dissertation.
2

Use of metabolomics and 13C-labeling approaches to elucidate pathways involved in oil synthesis of pennycress (Thlaspi arvense L.) embryos

Tsogtbaatar, Enkhtuul January 2017 (has links)
No description available.
3

Numerical modeling of moving carbonaceous particle conversion in hot environments / Numerische Modellierung der Konversion bewegter Kohlenstoffpartikel in heißen Umgebungen

Kestel, Matthias 24 June 2016 (has links) (PDF)
The design and optimization of entrained flow gasifiers is conducted more and more via computational fluid dynamics (CFD). A detailed resolution of single coal particles within such simulations is nowadays not possible due to computational limitations. Therefore the coal particle conversion is often represented by simple 0-D models. For an optimization of such 0-D models a precise understanding of the physical processes at the boundary layer and within the particle is necessary. In real gasifiers the particles experience Reynolds numbers up to 10000. However in the literature the conversion of coal particles is mainly regarded under quiescent conditions. Therefore an analysis of the conversion of single particles is needed. Thereto the computational fluid dynamics can be used. For the detailed analysis of single reacting particles under flow conditions a CFD model is presented. Practice-oriented parameters as well as features of the CFD model result from CFD simulations of a Siemens 200MWentrained flow gasifier. The CFD model is validated against an analytical model as well as two experimental data-sets taken from the literature. In all cases good agreement between the CFD and the analytics/experiments is shown. The numerical model is used to study single moving solid particles under combustion conditions. The analyzed parameters are namely the Reynolds number, the ambient temperature, the particle size, the operating pressure, the particle shape, the coal type and the composition of the gas. It is shown that for a wide range of the analyzed parameter range no complete flame exists around moving particles. This is in contrast to observations made by other authors for particles in quiescent atmospheres. For high operating pressures, low Reynolds numbers, large particle diameters and high ambient temperatures a flame exists in the wake of the particle. The impact of such a flame on the conversion of the particle is low. For high steam concentrations in the gas a flame appears, which interacts with the particle and influences its conversion. Furthermore the impact of the Stefan-flow on the boundary layer of the particle is studied. It is demonstrated that the Stefan-flow can reduce the drag coefficient and the Nusselt number for several orders of magnitude. On basis of the CFD results two new correlations are presented for the drag coefficient and the Nusselt number. The comparison between the correlations and the CFD shows a significant improvement of the new correlations in comparison to archived correlations. The CFD-model is further used to study moving single porous particles under gasifying conditions. Therefore a 2-D axis-symmetric system of non-touching tori as well as a complex 3-D geometry based on the an inverted settlement of monodisperse spheres is utilized. With these geometries the influence of the Reynolds number, the ambient temperature, the porosity, the intrinsic surface and the size of the radiating surface is analyzed. The studies show, that the influence of the flow on the particle conversion is moderate. In particular the impact of the flow on the intrinsic transport and conversion processes is mainly negligible. The size of the radiating surface has a similar impact on the conversion as the flow in the regarded parameter range. On basis of the CFD calculations two 0-D models for the combustion and gasification of moving particles are presented. These models can reproduce the results predicted by the CFD sufficiently for a wide parameter range.
4

Network flux analysis of central metabolism in plants

Masakapalli, Shyam Kumar January 2011 (has links)
The aim of this thesis was to develop stable-isotope steady-state metabolic flux analysis (MFA) based on <sup>13</sup>C labeling to quantify intracellular fluxes of central carbon metabolism in plants. The experiments focus on the analysis of a heterotrophic cell suspension culture of Arabidopsis thaliana (L) Heynh. (ecotype Landsberg erecta). The first objective was to develop a robust methodology based on combining high quality steady-state stable labeling data, metabolic modeling and computational analysis. A comprehensive analysis of the factors that influence the outcome of MFA was undertaken and best practice established. This allowed a critical analysis of the subcellular compartmentation of carbohydrate oxidation in the cell culture. The second objective was to apply the methodology to nutritional perturbations of the cell suspension. A comparison of growth on different nitrogen sources revealed that transfer to an ammonium-free medium: (i) increased flux through the oxidative pentose phosphate pathway (oxPPP) by 10% relative to glucose utilisation; (ii) caused a substantial decrease in entry of carbon into the tricarboxylic acid cycle (TCA); and (iii) increased the carbon conversion efficiency from 55% to 69%. Although growth on nitrate alone might be expected to increase the demand for reductant, the cells responded by decreasing the assimilation of inorganic N. Cells were also grown in media containing different levels of inorganic phosphate (Pi). Comparison of the flux maps showed that decreasing Pi availability: (i) decreased flux through the oxPPP; (ii) increased the proportion of substrate fully oxidised by the TCA cycle; and (iii) decreased carbon conversion efficiency. These changes are consistent with redirection of metabolism away from biosynthesis towards cell maintenance as Pi is depleted. Although published genome-wide transcriptomic and metabolomic studies suggest that Pi starvation leads to the restructuring of carbon and nitrogen metabolism, the current analysis suggests that the impact on metabolic organisation is much less extreme.
5

Numerical modeling of moving carbonaceous particle conversion in hot environments

Kestel, Matthias 02 June 2016 (has links)
The design and optimization of entrained flow gasifiers is conducted more and more via computational fluid dynamics (CFD). A detailed resolution of single coal particles within such simulations is nowadays not possible due to computational limitations. Therefore the coal particle conversion is often represented by simple 0-D models. For an optimization of such 0-D models a precise understanding of the physical processes at the boundary layer and within the particle is necessary. In real gasifiers the particles experience Reynolds numbers up to 10000. However in the literature the conversion of coal particles is mainly regarded under quiescent conditions. Therefore an analysis of the conversion of single particles is needed. Thereto the computational fluid dynamics can be used. For the detailed analysis of single reacting particles under flow conditions a CFD model is presented. Practice-oriented parameters as well as features of the CFD model result from CFD simulations of a Siemens 200MWentrained flow gasifier. The CFD model is validated against an analytical model as well as two experimental data-sets taken from the literature. In all cases good agreement between the CFD and the analytics/experiments is shown. The numerical model is used to study single moving solid particles under combustion conditions. The analyzed parameters are namely the Reynolds number, the ambient temperature, the particle size, the operating pressure, the particle shape, the coal type and the composition of the gas. It is shown that for a wide range of the analyzed parameter range no complete flame exists around moving particles. This is in contrast to observations made by other authors for particles in quiescent atmospheres. For high operating pressures, low Reynolds numbers, large particle diameters and high ambient temperatures a flame exists in the wake of the particle. The impact of such a flame on the conversion of the particle is low. For high steam concentrations in the gas a flame appears, which interacts with the particle and influences its conversion. Furthermore the impact of the Stefan-flow on the boundary layer of the particle is studied. It is demonstrated that the Stefan-flow can reduce the drag coefficient and the Nusselt number for several orders of magnitude. On basis of the CFD results two new correlations are presented for the drag coefficient and the Nusselt number. The comparison between the correlations and the CFD shows a significant improvement of the new correlations in comparison to archived correlations. The CFD-model is further used to study moving single porous particles under gasifying conditions. Therefore a 2-D axis-symmetric system of non-touching tori as well as a complex 3-D geometry based on the an inverted settlement of monodisperse spheres is utilized. With these geometries the influence of the Reynolds number, the ambient temperature, the porosity, the intrinsic surface and the size of the radiating surface is analyzed. The studies show, that the influence of the flow on the particle conversion is moderate. In particular the impact of the flow on the intrinsic transport and conversion processes is mainly negligible. The size of the radiating surface has a similar impact on the conversion as the flow in the regarded parameter range. On basis of the CFD calculations two 0-D models for the combustion and gasification of moving particles are presented. These models can reproduce the results predicted by the CFD sufficiently for a wide parameter range.:List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XIII Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIX 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 State of the Art in Carbon Conversion Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Combustion of Solid Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Gasification of Porous Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Classification of the Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 1.3 Overview of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2 Basic Theory and Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Geometry and Length Scales of Coal Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2 Conditions in a Siemens Like 200 MW Entrained Flow Gasifier . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 2.2.2 Temperature Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Particle Volume Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 2.3 Time Scales of the Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.5 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Gas Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 2.7 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8 Numerics and Solution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 2.9 Mesh and Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 3 CFD-based Oxidation Modeling of a Non-Porous Carbon Particle . . . . . . . . . . . . . . . . . . . . .37 3.1 Chemical Reaction System for Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 3.1.1 Heterogeneous Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 3.1.2 Homogeneous Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 3.1.3 Comparison of the Semi-Global vs. Reduced Reaction Mechanisms for the Gas Phase . .41 3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.2.1 Validation Against an Analytical Solution of the Two-Film Model . . . . . . . . . . . . . . . . . .43 3.2.2 Validation Against Experiments I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.3 Validation Against Experiments II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 3.3 Influence of Ambient Temperature and Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . .51 3.4 Influence of Heterogeneous Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Influence of Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.6 Influence of Operating Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.7 Influence of Particle Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 3.8 The influence of Particle Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.9 Impact of Stefan Flow on the Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.9.1 Impact of Stefan Flow on the Drag Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 3.9.2 Impact of Stefan Flow on the Nusselt and Sherwood Number . . . . . . . . . . . . . . . . . . . .85 3.10 Single-Film Sub-Model vs. CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4 CFD-based Numerical Modeling of Partial Oxidation of a Porous Carbon Particle . . . . . . . . . .99 4.1 Chemical Reaction System for Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.1.1 Heterogeneous Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 4.1.2 Homogeneous Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Two-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 Influence of Reynolds Number and Ambient Temperature . . . . . . . . . . . . . . . . . . . . . .109 4.2.3 Influence of Porosity and Internal Surface . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3 Comparative Three-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 4.3.2 Results of the 3-D Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.4 Extended Sub-Model for Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .141 5.1 Summary of This Work . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .141 5.2 Recommendations for Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.1 Appendix I: Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.2 Appendix II: Two-Film Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.3 Appendix III: Sub-Model for the Combustion of Solid Particles . . . . . . . . . . . . . . . . . . . . 160 6.4 Appendix IV: Sub-Model for the Gasification of Porous Particles . . . . . . . . . . . . . . . . . . . 161

Page generated in 0.1628 seconds