Spelling suggestions: "subject:"nusselt correlation"" "subject:"nusselt borrelation""
1 |
SENSITIVITY STUDIES ON THE THERMAL MODEL OF A SOLAR STEAM TURBINECalianno, Luca January 2016 (has links)
In the past, steam turbines were mostly used for base load operation. Nowadays, with the increased development of variable renewable technologies, these same steam turbines are withstanding higher cyclic operational regimes with more frequent start-ups and fast changing loads. As such, improving the operational flexibility of installed and future designed steam turbines is a key aspect to be considered by equipment manufacturers. Steam turbine start-up is a phase of particular interest since is considered to be the most intricate of transient operations. During this phase, the machine can potentially be subjected to excessive thermal stresses and axial rubbing due to differential thermal expansion. These two thermal phenomena either consume component lifetime or can lead to machine failure if not carefully controlled. As such, there is a balance to be considered between increasing turbine start-up speed while ensuring the safe operation and life preservation of these machines. In order to improve the transient operation of steam turbines, it becomes important to examine their thermal behavior during start-up operation. To do that, it is important to have tools able to predict the thermal response of the machine. In this thesis work the impact of different aspects and boundary conditions on the results of ST3M, a KTH in-house tool, were investigated with the aim of understanding how large was their impact on the way to capture the thermal behavior of the turbine in terms of metal temperature and differential expansion. A small industrial high pressure turbine was validated against measured data and implemented on a sensitivity study; this analysis showed that the geometrical approximation introduce errors in the results, that the use of empirical Nusselt correlations give similar results to the validated model and that the cavity assumptions have a large impact on the trend of the differential expansion. Lastly, a strategy to validate any other similar turbine to the one of the study case was proposed in order to give a guide to future works in how to validate a model and what are the most influent parameters to take care of.
|
2 |
Flight and Stability of a Laser Inertial Fusion Energy Target in the Drift Region Between Injection and the Reaction Chamber with Computational Fluid DynamicsMitori, Tiffany Leilani 01 March 2014 (has links) (PDF)
A Laser Inertial Fusion Energy (LIFE) target’s flight through a low Reynolds number and high Mach number regime was analyzed with computational fluid dynamics software. This regime consisted of xenon gas at 1,050 K and approximately 6,670 Pa. Simulations with similar flow conditions were performed over a sphere and compared with experimental data and published correlations for validation purposes. Transient considerations of the developing flow around the target were explored. Simulations of the target at different velocities were used to determine correlations for the drag coefficient and Nusselt number as functions of the Reynolds number. Simulations with different target angles of attack were used to determine the aerodynamic coefficients of drag, lift, Magnus moment, and overturning moment as well as target stability. The drag force, lift force, and overturning moment changed minimally with spin. Above an angle of attack of 15°, the overturning moment would be destabilizing. At angles of attack less than 15°, the overturning moment would tend to decrease the target’s angle of attack, indicating the lack of a need for spin for stability at these small angles. This stabilizing moment would cause the target to move in a mildly damped oscillation about the axis parallel to the free-stream velocity vector through the target’s center of gravity.
|
3 |
Thermal design and optimization of high torque density electric machinesSemidey, Stephen Andrew 02 July 2012 (has links)
The overarching goal of this work is to address the design of next-generation, high torque density electrical machines through numerical optimization using an integrated thermal-electromagnetic design tool that accounts for advanced cooling technology. A parametric thermal model of electric machines was constructed and implemented using a finite difference approach incorporating an automated, self segmenting mesh generation. A novel advanced cooling technology is proposed to improve thermal transport in the machine by removing heat directly from the windings via heat exchangers located between the winding bundles. Direct winding heat exchange (DWHX) requires high convective transport and low pressure loss. The heat transfer to pressure drop tradeoff was addressed by developing empirically derived Nusselt number and friction factor correlations for micro-hydrofoil enhanced meso-channels. The parametric thermal model, advanced cooling technique, Nusselt number and friction factor correlations were combined with a parametric electromagnetic model for electric machines. The integrated thermal-electromagnetic model was then used in conjunction with particle swarm optimization to determine optimal conceptual designs. The Nusselt number correlation achieves an R² value of 0.99 with 95% of the data falling within ± 2.5% similarly the friction factor correlation achieves an R² value of 0.92 with 95% of the data falling within ± 10.2%. The integrated thermal-electromagnetic design tool, incorporating DWHX, generated an optimized 20 kW permanent magnet electric machine design achieving a torque density of 23.2 N-m/L based on total system volume.
|
4 |
SENSITIVITY STUDIES ON THE THERMAL MODEL OF A SOLAR STEAM TURBINECALIANNO, LUCA January 2016 (has links)
Förr i tiden, ångturbiner har främst använts för baskraft operation. Numera med den ökade utvecklingen av varierande förnyelsbara är samma ångturbiner motstå högre cykliska operativa system med mer frekvent uppstarter och snabbt föränderliga laster. Som sådan, förbättra den operativa flexibiliteten hos installerade och framtida utformad ångturbiner är en viktig aspekt för att övervägas av utrustning. Ångturbin uppstart är en intressant fas eftersom anses vara den mest intrikata av transienter. Under denna fas kan maskinen potentiellt utsättas för omåttlig termiska spänningar och axiella gnugga på grund av differentiell termisk expansion. Dessa två termiska fenomen antingen konsumera komponent livstid eller kan leda till maskinhaveri om inte kontrolleras noggrant. Som sådan, det finns en balans som skall beaktas mellan ökande turbin uppstart hastighet samtidigt som säker drift och livslängd bevarande av dessa maskiner. För att förbättra den transienta operationer av ångturbiner, blir det viktigt att undersöka deras termiska beteende under uppstarter. För att göra detta, är det viktigt att ha verktyg som kan förutäga den termiska responsen hos maskinen. I denna avhandling fungerar effekterna av olika aspekter och randvillkor om resultaten av ST3M, en KTH internt verktyg, undersöktes med syfte att förstå hur stor blev deras inverkan på sättet att fånga den termiska beteendet hos turbinen i termer av metalltemperatur och differentiell expansion. En industriell högtrycksturbinen validerades mot uppmätta data och genomförs på en känslighetsanalys; denna analys visade att den geometriska approximation införa fel i resultaten, att användningen av empiriska Nusselt korrelationer ge liknande resultat som den validerade modellen och att håligheten antaganden har en stor inverkan på utvecklingen av expansionsskillnaden. Slutligen har en strategi för att validera någon annan liknande turbin till en av studien fallet föreslås för att ge en vägledning för framtida arbeten i hur att validera en modell och vilka är de mest inflytelserika parametrar att ta hand om. / In the past, steam turbines were mostly used for base load operation. Nowadays, with the increased development of variable renewable technologies, these same steam turbines are withstanding higher cyclic operational regimes with more frequent start-ups and fast changing loads. As such, improving the operational flexibility of installed and future designed steam turbines is a key aspect to be considered by equipment manufacturers. Steam turbine start-up is a phase of particular interest since is considered to be the most intricate of transient operations. During this phase, the machine can potentially be subjected to excessive thermal stresses and axial rubbing due to differential thermal expansion. These two thermal phenomena either consume component lifetime or can lead to machine failure if not carefully controlled. As such, there is a balance to be considered between increasing turbine start-up speed while ensuring the safe operation and life preservation of these machines. In order to improve the transient operation of steam turbines, it becomes important to examine their thermal behavior during start-up operation. To do that, it is important to have tools able to predict the thermal response of the machine. In this thesis work the impact of different aspects and boundary conditions on the results of ST3M, a KTH in-house tool, were investigated with the aim of understanding how large was their impact on the way to capture the thermal behavior of the turbine in terms of metal temperature and differential expansion. A small industrial high pressure turbine was validated against measured data and implemented on a sensitivity study; this analysis showed that the geometrical approximation introduce errors in the results, that the use of empirical Nusselt correlations give similar results to the validated model and that the cavity assumptions have a large impact on the trend of the differential expansion. Lastly, a strategy to validate any other similar turbine to the one of the study case was proposed in order to give a guide to future works in how to validate a model and what are the most influent parameters to take care of.
|
5 |
Untersuchung des lokalen Wärmeübergangs in Seitenräumen von Turbinengehäusen am Beispiel von IndustriedampfturbinenSpura, David 06 October 2021 (has links)
Industriedampfturbinen weisen zwischen ihren Leitgitterträgern und dem Außengehäuse dampfgefüllte Seitenräume auf, die in ihrer Form und in ihren Abmessungen stark variieren. Der durch die Wirbelstrukturen im Seitenraum induzierte erzwungene konvektive Wärmeübergang bestimmt das thermomechanische Verhalten des Gehäuses maßgeblich. Bislang existiert jedoch noch kein verallgemeinerungsfähiges Wissen zum lokalen Wärmeübergang in Gehäuseseitenräumen. Mittels des neu konzipierten Seitenraumversuchsstandes „SiSTeR“ sind erstmalig systematische experimentelle Untersuchungen zum Wärmeübergang in skalierten, generisch variablen Totraummodellen in Luftströmung durchgeführt worden. Die Bestimmung lokal aufgelöster Wärmeübergangskoeffizienten (WÜK) erfolgt mittels zweier unabhängiger rückwirkungsarmer Messverfahren mit geringem Wärmeeintrag. Für die stationäre inverse Methode wurden Materialtemperaturen in der Totraumaußenwand gemessen und mittels verschiedener thermischer Ersatzmodelle, die sich hinsichtlich ihrer Komplexität, Berechnungsdauer und Genauigkeit unterscheiden, umgewertet. Die Unsicherheit der aus den Temperaturen berechneten WÜK liegt bei allen eingesetzten inversen Verfahren deutlich unter 10 %, mit Ausnahme der äußersten Randbereiche des Seitenraumes. Die WÜK-Verteilung im Totraum kann in guter Näherung mit einer parametrisierten Gauß’schen Glockenkurve approximiert werden. Neben der Reynolds-Zahl in der Hauptströmung stellt die Breite des Einströmspaltes zum Seitenraum einen Haupteinflussparameter auf den Wärmeübergang dar. Es wurde eine Nusselt-Korrelation entwickelt, die alle experimentell ermittelten Werte zufriedenstellend abbildet und dafür geeignet ist, innerhalb ihrer Gültigkeitsgrenzen detaillierte WÜK-Verläufe für beliebige Seitenräume in Turbinen und Strömungsverhältnisse zu berechnen. Begleitend zu den experimentellen Untersuchungen erfolgte die Nachrechnung ausgewählter Versuchskonfigurationen mittels numerischer Strömungssimulation.:1 Einleitung und Motivation
2 Stand des Wissens
2.1 Strömung und Wärmeübergang in Seitenräumen von Dampfturbinen
2.2 Strömung in Kavitäten mit T- und L-förmigem Querschnitt
2.3 Wärmeübergang in Kavitäten mit quadratischem Querschnitt
2.4 Notwendigkeit und Ausgangslage der Untersuchungen
2.5 Überblick über aktuelle Forschungstätigkeiten auf dem Gebiet
3 Zielstellung, Methodik und Lösungsweg
4 Versuchsaufbau und -durchführung
4.1 Seitenraumversuchsstand „SiSTeR“
4.1.1 Versuchsstandkonzept
4.1.2 Dimensionierung und Skalierung der Modellgeometrie
4.1.3 Experimentelle Implementierung des Versuchsstandes
4.1.4 Versuchsanlage zur geregelten Druckluftbereitstellung für den Versuchsstand
4.2 Instrumentierung
4.2.1 Wärmeübergangsmessung im Seitenraum
4.2.2 Wanddruckmessung im Seitenraum
4.2.3 Strömungsmessung im konzentrischen Ringspalt des Hauptströmungskanals
4.2.4 Betriebsmessstellen an der Versuchsanlage
4.3 Messdatenerfassung und -verarbeitung
4.3.1 Messwerterfassungssystem
4.3.2 Datenverarbeitung und -synchronisierung
4.4 Datenauswertung
4.4.1 Massenstrom aus Blendenberechnung
4.4.2 Bezugstemperatur, Bezugsdruck und charakteristische Strömungsgrößen im Versuchsstand
4.4.3 Thermisches Netzwerkmodell zur Abschätzung lokaler Wärmeübergangskoeffizienten
4.4.4 Rückwärtsrechnung mittels gradientenbasiertem Optimierungsverfahren
4.4.5 Ableitungsfreie Optimierung mittels evolutionärem Algorithmus
4.4.6 Inverse Berechnung mittels Trefftz-Funktionen und Regularisierung
4.4.7 Vergleich der mit den Rechenmodellen ermittelten WÜK-Verläufe
4.5 Versuchsplanung und -durchführung
4.5.1 Versuchsablauf
4.5.2 Versuchsmatrix
4.6 Datenreduktion und -mittelung
5 Ergebnisse und Diskussion
5.1 Betriebscharakteristik der Versuchsanlage
5.2 Kalibrierung der Fünflochsonde an der Freistrahldüse
5.3 Strömungsfeld im konzentrischen Ringspaltkanal
5.4 Druckverteilung an der Außenwandinnenoberfläche
5.5 Thermodynamische Stoffwerte der Wandmaterialien
5.5.1 Dichte
5.5.2 Wärmeleitfähigkeit, Temperaturleitfähigkeit, spezifische Wärmekapazität
5.6 Kalibrierung des Messaufbaus an der Saugrohrstrecke
5.7 Messergebnisse zum lokalen Wärmeübergang in generischen Seitenraumgeometrien
5.7.1 Vergleich der Messmethoden
5.7.2 Reproduzierbarkeit und Streuung der Messwerte
5.7.3 Einfluss der Reynolds-Zahl Re in der Hauptströmung
5.7.4 Einfluss der Einströmbreite s
5.7.5 Einfluss der Breite der Kavität b
5.7.6 Einfluss der Exzentrizität der Kavität e
5.7.7 Einfluss des Drallwinkels α in der Anströmung zum Seitenraum
5.8 Analyse und Abschätzung von Messunsicherheiten
5.8.1 Unsicherheit der gemessenen Absolut- und Differenzdrücke
5.8.2 Unsicherheit der gemessenen Temperaturen
5.8.3 Unsicherheit der berechneten Wärmeübergangskoeffizienten
5.8.4 Unsicherheit der geometrischen Maße von Seitenraum und Strömungskanal
5.8.5 Unsicherheit des Massenstromes an der Blendenmessstrecke
5.8.6 Unsicherheit der Reynolds-Zahl
5.8.7 Unsicherheit der Nusselt-Zahl
5.8.8 Unsicherheit der Strömungswinkel und Geschwindigkeitskomponenten
5.9 Verallgemeinerung der Ergebnisse als Nusselt-Korrelation
6 Numerische Nachrechnung ausgewählter Konfigurationen mittels CFD-Simulation
6.1 CFD-Basismodell
6.1.1 Geometrie
6.1.2 Vernetzung
6.1.3 Randbedingungen
6.1.4 Medium/ Stoffkennwerte
6.1.5 Physikalische Modellierung/ Setup
6.1.6 Lösung/ Konvergenz
6.1.7 Auswertung und Ergebnisse
6.2 Modelldetaillierungsgrad und Abbruchfehler
6.3 Netzunabhängigkeitsstudie
6.4 Einfluss der Randbedingungen und der Modellierung
6.5 Large-Eddy-Simulation
6.6 Ergebnisse der systematischen Nachrechnung
7 Übertragung der Ergebnisse auf reale Turbinenverhältnisse
8 Zusammenfassung und Schlussfolgerungen
9 Ausblick
Literatur / Industrial steam turbines have steam-filled side spaces between their guide vane carriers and the outer casing, which vary greatly in shape and dimensions. The forced convective heat transfer induced by the vortex structures in the side space significantly influences the thermo-mechanical behaviour of the casing. Up to present, however, there is no generalisable knowledge about the local heat transfer in casing side spaces. By means of the newly designed side space test rig 'SiSTeR', systematic experimental investigations of heat transfer in scaled, generically variable side space models have been carried out for the first time using air flow. Local heat transfer coefficients (HTC) were determined by using two independent measuring methods with low heat input. For the steady-state inverse method, material temperatures in the outer wall of the side space were measured and converted by means of different thermal substitute models, which differ in terms of complexity, calculation time and accuracy. The uncertainty of the HTC calculated from the temperatures is clearly below 10 % for all inverse methods used, with the exception of the outermost edge areas of the side space. The HTC distribution in the side space can be approximated with a parameterised Gaussian bell curve. In addition to the Reynolds number in the main flow, the width of the inflow gap to the side space represents a main influence parameter on the heat transfer. A Nusselt correlation was developed that satisfactorily reproduces all experimentally determined values and is suitable for calculating detailed heat transfer curves for any side spaces in turbines and flow conditions within its limits of validity. Accompanying the experimental investigations, selected test configurations were further studied by means of numerical flow simulations.:1 Einleitung und Motivation
2 Stand des Wissens
2.1 Strömung und Wärmeübergang in Seitenräumen von Dampfturbinen
2.2 Strömung in Kavitäten mit T- und L-förmigem Querschnitt
2.3 Wärmeübergang in Kavitäten mit quadratischem Querschnitt
2.4 Notwendigkeit und Ausgangslage der Untersuchungen
2.5 Überblick über aktuelle Forschungstätigkeiten auf dem Gebiet
3 Zielstellung, Methodik und Lösungsweg
4 Versuchsaufbau und -durchführung
4.1 Seitenraumversuchsstand „SiSTeR“
4.1.1 Versuchsstandkonzept
4.1.2 Dimensionierung und Skalierung der Modellgeometrie
4.1.3 Experimentelle Implementierung des Versuchsstandes
4.1.4 Versuchsanlage zur geregelten Druckluftbereitstellung für den Versuchsstand
4.2 Instrumentierung
4.2.1 Wärmeübergangsmessung im Seitenraum
4.2.2 Wanddruckmessung im Seitenraum
4.2.3 Strömungsmessung im konzentrischen Ringspalt des Hauptströmungskanals
4.2.4 Betriebsmessstellen an der Versuchsanlage
4.3 Messdatenerfassung und -verarbeitung
4.3.1 Messwerterfassungssystem
4.3.2 Datenverarbeitung und -synchronisierung
4.4 Datenauswertung
4.4.1 Massenstrom aus Blendenberechnung
4.4.2 Bezugstemperatur, Bezugsdruck und charakteristische Strömungsgrößen im Versuchsstand
4.4.3 Thermisches Netzwerkmodell zur Abschätzung lokaler Wärmeübergangskoeffizienten
4.4.4 Rückwärtsrechnung mittels gradientenbasiertem Optimierungsverfahren
4.4.5 Ableitungsfreie Optimierung mittels evolutionärem Algorithmus
4.4.6 Inverse Berechnung mittels Trefftz-Funktionen und Regularisierung
4.4.7 Vergleich der mit den Rechenmodellen ermittelten WÜK-Verläufe
4.5 Versuchsplanung und -durchführung
4.5.1 Versuchsablauf
4.5.2 Versuchsmatrix
4.6 Datenreduktion und -mittelung
5 Ergebnisse und Diskussion
5.1 Betriebscharakteristik der Versuchsanlage
5.2 Kalibrierung der Fünflochsonde an der Freistrahldüse
5.3 Strömungsfeld im konzentrischen Ringspaltkanal
5.4 Druckverteilung an der Außenwandinnenoberfläche
5.5 Thermodynamische Stoffwerte der Wandmaterialien
5.5.1 Dichte
5.5.2 Wärmeleitfähigkeit, Temperaturleitfähigkeit, spezifische Wärmekapazität
5.6 Kalibrierung des Messaufbaus an der Saugrohrstrecke
5.7 Messergebnisse zum lokalen Wärmeübergang in generischen Seitenraumgeometrien
5.7.1 Vergleich der Messmethoden
5.7.2 Reproduzierbarkeit und Streuung der Messwerte
5.7.3 Einfluss der Reynolds-Zahl Re in der Hauptströmung
5.7.4 Einfluss der Einströmbreite s
5.7.5 Einfluss der Breite der Kavität b
5.7.6 Einfluss der Exzentrizität der Kavität e
5.7.7 Einfluss des Drallwinkels α in der Anströmung zum Seitenraum
5.8 Analyse und Abschätzung von Messunsicherheiten
5.8.1 Unsicherheit der gemessenen Absolut- und Differenzdrücke
5.8.2 Unsicherheit der gemessenen Temperaturen
5.8.3 Unsicherheit der berechneten Wärmeübergangskoeffizienten
5.8.4 Unsicherheit der geometrischen Maße von Seitenraum und Strömungskanal
5.8.5 Unsicherheit des Massenstromes an der Blendenmessstrecke
5.8.6 Unsicherheit der Reynolds-Zahl
5.8.7 Unsicherheit der Nusselt-Zahl
5.8.8 Unsicherheit der Strömungswinkel und Geschwindigkeitskomponenten
5.9 Verallgemeinerung der Ergebnisse als Nusselt-Korrelation
6 Numerische Nachrechnung ausgewählter Konfigurationen mittels CFD-Simulation
6.1 CFD-Basismodell
6.1.1 Geometrie
6.1.2 Vernetzung
6.1.3 Randbedingungen
6.1.4 Medium/ Stoffkennwerte
6.1.5 Physikalische Modellierung/ Setup
6.1.6 Lösung/ Konvergenz
6.1.7 Auswertung und Ergebnisse
6.2 Modelldetaillierungsgrad und Abbruchfehler
6.3 Netzunabhängigkeitsstudie
6.4 Einfluss der Randbedingungen und der Modellierung
6.5 Large-Eddy-Simulation
6.6 Ergebnisse der systematischen Nachrechnung
7 Übertragung der Ergebnisse auf reale Turbinenverhältnisse
8 Zusammenfassung und Schlussfolgerungen
9 Ausblick
Literatur
|
6 |
Numerical modeling of moving carbonaceous particle conversion in hot environments / Numerische Modellierung der Konversion bewegter Kohlenstoffpartikel in heißen UmgebungenKestel, Matthias 24 June 2016 (has links) (PDF)
The design and optimization of entrained flow gasifiers is conducted more and more via computational fluid dynamics (CFD). A detailed resolution of single coal particles within such simulations is nowadays not possible due to computational limitations. Therefore the coal particle conversion is often represented by simple 0-D models. For an optimization of such 0-D models a precise understanding of the physical processes at the boundary layer and within the particle is necessary.
In real gasifiers the particles experience Reynolds numbers up to 10000. However in the literature the conversion of coal particles is mainly regarded under quiescent conditions. Therefore an analysis of the conversion of single particles is needed. Thereto the computational fluid dynamics can be used.
For the detailed analysis of single reacting particles under flow conditions a CFD model is presented. Practice-oriented parameters as well as features of the CFD model result from CFD simulations of a Siemens 200MWentrained flow gasifier. The CFD model is validated against an analytical model as well as two experimental data-sets taken from the literature. In all cases good agreement between the CFD and the analytics/experiments is shown.
The numerical model is used to study single moving solid particles under combustion conditions. The analyzed parameters are namely the Reynolds number, the ambient temperature, the particle size, the operating pressure, the particle shape, the coal type and the composition of the gas. It is shown that for a wide range of the analyzed parameter range no complete flame exists around moving particles. This is in contrast to observations made by other authors for particles in quiescent atmospheres. For high operating pressures, low Reynolds numbers, large particle diameters and high ambient temperatures a flame exists in the wake of the particle. The impact of such a flame on the conversion of the particle is low. For high steam concentrations in the gas a flame appears, which interacts with the particle and influences its conversion.
Furthermore the impact of the Stefan-flow on the boundary layer of the particle is studied. It is demonstrated that the Stefan-flow can reduce the drag coefficient and the Nusselt number for several orders of magnitude. On basis of the CFD results two new correlations are presented for the drag coefficient and the Nusselt number. The comparison between the correlations and the CFD shows a significant improvement of the new correlations in comparison to archived correlations.
The CFD-model is further used to study moving single porous particles under gasifying conditions. Therefore a 2-D axis-symmetric system of non-touching tori as well as a complex 3-D geometry based on the an inverted settlement of monodisperse spheres is utilized. With these geometries the influence of the Reynolds number, the ambient temperature, the porosity, the intrinsic surface and the size of the radiating surface is analyzed. The studies show, that the influence of the flow on the particle conversion is moderate. In particular the impact of the flow on the intrinsic transport and conversion processes is mainly negligible. The size of the radiating surface has a similar impact on the conversion as the flow in the regarded parameter range.
On basis of the CFD calculations two 0-D models for the combustion and gasification of moving particles are presented. These models can reproduce the results predicted by the CFD sufficiently for a wide parameter range.
|
7 |
Numerical modeling of moving carbonaceous particle conversion in hot environmentsKestel, Matthias 02 June 2016 (has links)
The design and optimization of entrained flow gasifiers is conducted more and more via computational fluid dynamics (CFD). A detailed resolution of single coal particles within such simulations is nowadays not possible due to computational limitations. Therefore the coal particle conversion is often represented by simple 0-D models. For an optimization of such 0-D models a precise understanding of the physical processes at the boundary layer and within the particle is necessary.
In real gasifiers the particles experience Reynolds numbers up to 10000. However in the literature the conversion of coal particles is mainly regarded under quiescent conditions. Therefore an analysis of the conversion of single particles is needed. Thereto the computational fluid dynamics can be used.
For the detailed analysis of single reacting particles under flow conditions a CFD model is presented. Practice-oriented parameters as well as features of the CFD model result from CFD simulations of a Siemens 200MWentrained flow gasifier. The CFD model is validated against an analytical model as well as two experimental data-sets taken from the literature. In all cases good agreement between the CFD and the analytics/experiments is shown.
The numerical model is used to study single moving solid particles under combustion conditions. The analyzed parameters are namely the Reynolds number, the ambient temperature, the particle size, the operating pressure, the particle shape, the coal type and the composition of the gas. It is shown that for a wide range of the analyzed parameter range no complete flame exists around moving particles. This is in contrast to observations made by other authors for particles in quiescent atmospheres. For high operating pressures, low Reynolds numbers, large particle diameters and high ambient temperatures a flame exists in the wake of the particle. The impact of such a flame on the conversion of the particle is low. For high steam concentrations in the gas a flame appears, which interacts with the particle and influences its conversion.
Furthermore the impact of the Stefan-flow on the boundary layer of the particle is studied. It is demonstrated that the Stefan-flow can reduce the drag coefficient and the Nusselt number for several orders of magnitude. On basis of the CFD results two new correlations are presented for the drag coefficient and the Nusselt number. The comparison between the correlations and the CFD shows a significant improvement of the new correlations in comparison to archived correlations.
The CFD-model is further used to study moving single porous particles under gasifying conditions. Therefore a 2-D axis-symmetric system of non-touching tori as well as a complex 3-D geometry based on the an inverted settlement of monodisperse spheres is utilized. With these geometries the influence of the Reynolds number, the ambient temperature, the porosity, the intrinsic surface and the size of the radiating surface is analyzed. The studies show, that the influence of the flow on the particle conversion is moderate. In particular the impact of the flow on the intrinsic transport and conversion processes is mainly negligible. The size of the radiating surface has a similar impact on the conversion as the flow in the regarded parameter range.
On basis of the CFD calculations two 0-D models for the combustion and gasification of moving particles are presented. These models can reproduce the results predicted by the CFD sufficiently for a wide parameter range.:List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XIII
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIX
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 State of the Art in Carbon Conversion Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Combustion of Solid Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Gasification of Porous Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Classification of the Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.3 Overview of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2 Basic Theory and Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Geometry and Length Scales of Coal Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.2 Conditions in a Siemens Like 200 MW Entrained Flow Gasifier . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.2.2 Temperature Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Particle Volume Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.3 Time Scales of the Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.5 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Gas Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
2.7 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Numerics and Solution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.9 Mesh and Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3 CFD-based Oxidation Modeling of a Non-Porous Carbon Particle . . . . . . . . . . . . . . . . . . . . .37
3.1 Chemical Reaction System for Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.1.1 Heterogeneous Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.1.2 Homogeneous Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
3.1.3 Comparison of the Semi-Global vs. Reduced Reaction Mechanisms for the Gas Phase . .41
3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.2.1 Validation Against an Analytical Solution of the Two-Film Model . . . . . . . . . . . . . . . . . .43
3.2.2 Validation Against Experiments I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Validation Against Experiments II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
3.3 Influence of Ambient Temperature and Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . .51
3.4 Influence of Heterogeneous Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Influence of Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
3.6 Influence of Operating Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
3.7 Influence of Particle Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
3.8 The influence of Particle Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.9 Impact of Stefan Flow on the Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.9.1 Impact of Stefan Flow on the Drag Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
3.9.2 Impact of Stefan Flow on the Nusselt and Sherwood Number . . . . . . . . . . . . . . . . . . . .85
3.10 Single-Film Sub-Model vs. CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 CFD-based Numerical Modeling of Partial Oxidation of a Porous Carbon Particle . . . . . . . . . .99
4.1 Chemical Reaction System for Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.1 Heterogeneous Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
4.1.2 Homogeneous Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Two-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.2 Influence of Reynolds Number and Ambient Temperature . . . . . . . . . . . . . . . . . . . . . .109
4.2.3 Influence of Porosity and Internal Surface . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3 Comparative Three-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
4.3.2 Results of the 3-D Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.4 Extended Sub-Model for Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .141
5.1 Summary of This Work . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .141
5.2 Recommendations for Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1 Appendix I: Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2 Appendix II: Two-Film Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3 Appendix III: Sub-Model for the Combustion of Solid Particles . . . . . . . . . . . . . . . . . . . . 160
6.4 Appendix IV: Sub-Model for the Gasification of Porous Particles . . . . . . . . . . . . . . . . . . . 161
|
Page generated in 0.1084 seconds