Spelling suggestions: "subject:"cascade range"" "subject:"cascade tange""
41 |
Where Is the Rain-on-Snow Zone in the West-Central Washington Cascades?: Monte Carlo Simulation of Large Storms in the NorthwestBrunengo, Matthew John 01 January 2012 (has links)
Rain-on-snow (ROS) occurs when warm, wet air moves into latitudes and/or elevations having vulnerable snowpacks, where it can alter water inputs to infiltration, runoff and erosion. The Pacific Northwest is particularly susceptible: winter storms off the Pacific cause locally heavy rain plus snowmelt almost annually, and disastrous flooding and landsliding intermittently. In maritime mountainous terrain, the effects seem more likely and hydrologically important where warm rains and seasonal snowpacks are liable to coincide, in middle elevations. Several questions arise: (1) In the PNW, does ROS affect the long-term frequency and magnitude of water delivery to the ground, versus total precipitation (liquid and solid), during big storms? Where and how much? (2) If so, can we determine which elevations experience maximum hydrologic effects, the peak ROS zone? Probabilistic characteristics of ROS are difficult to establish because of geographic variability and sporadic occurrence: scattered stations and short observational records make quantitative frequency analysis difficult. These problems dictate a modeling approach, combining semi-random selection of storm properties with physical rules governing snow and water behavior during events. I created a simple computer program to perform Monte Carlo simulation of large storms over 1000 "years", generating realizations of snowpack and storm-weather conditions; in each event precipitation falls, snow accumulates and/or melts, and water moves to the ground. Frequency distributions are based on data from the Washington Cascades, and the model can be applied to specific sites or generalized elevations. Many of the data sets were based on observations at Stampede Pass, where high-quality measurements of weather and snow at the Cascade crest have been made since the 1940s. These data were used to inform the model, and to test its reliability with respect to the governing data distributions. In addition, data from ROS events at Stampede, and at research sites in southwest Oregon, were used to confirm that the model's deterministic calculations of snow accumulation, snowmelt, and percolation (yielding water available for runoff) adequately simulate conditions observed in the field. The Monte Carlo model was run for elevations ranging from 200 to 1500 m, each over a hypothetical millennium. Results indicate that the presence of snow in some storms reduces the amount of water reaching the ground. This occurred more often in highlands but also at middle and lower elevations, affecting the long-term frequency-magnitude relations across the landscape. In these conditions, the rain-gauges overestimate the amount of liquid water actually reaching the ground. For many storms, however, ROS enhances water reaching the ground, most significantly at elevations between ~500-1100 m. At lower and higher elevations, the water available for runoff exceeds precipitation in ~2% of events, but this proportion rises to ~20-30% at ~800 m. Other metrics (e.g., series statistics, exponential regression coefficients, frequency-magnitude factors) also indicate that this middle-elevation band (around ~800 m) experiences ROS most often and with greatest water available for runoff. Of the west-central Washington Cascades study region, about one-third to one-half the landscape is susceptible to significant ROS influence. These results indicate areas where ROS currently has the greatest hydrologic consequence on ecosystems and human works, and possibly the greatest sensitivity to changes in land-use and climate.
|
42 |
A Time Series Analysis of Volcanic Deformation near Three Sisters, Oregon, using InSARRiddick, Susan Nancy, 1987- 06 1900 (has links)
x, 57 p. : ill. (mostly col.) / An extensive area west of the Three Sisters volcanoes of Oregon has been actively uplifting for over a decade. Examining the deformation is imperative to improve understanding of the potential hazards of Cascade volcanism and the emplacement of magma. I refine the timing of the onset of the deformation, resolve the change in uplift rates through time, and quantify the current deformation rate using Interferometric Synthetic Aperture Radar. The deformation is assessed in time and space using single interferogram InSAR, stacks of interferograms, and line-of-sight time series. I examine the shape of the deformation pattern and explore volcanic source parameters using a Mogi model and tension crack model with topographic corrections. By using the best fit model and combining all useable interferograms from different tracks, I create the first complete continuous inflation time series of the Three Sisters volcanic uplift from 1992 to 2010. / Committee in charge: Dr. David A. Schmidt, Chair;
Dr. Katharine V. Cashman, Member;
Dr. Joshua J. Roering, Member
|
43 |
Full of Hot Air: Heat Flow at the Medicine Lake Volcano Hot Spot, Modoc County, CaliforniaGelwick, Katrina D. 03 June 2014 (has links)
No description available.
|
44 |
Debris flows in glaciated catchments : a case study on Mount Rainier, WashingtonLegg, Nicholas T. 15 March 2013 (has links)
Debris flows, which occur in mountain settings worldwide, have been particularly damaging in the glaciated basins flanking the stratovolcanoes in the Cascade Range of the northwestern United States. This thesis contains two manuscripts that respectively investigate the (1) initiation processes of debris flows in these glaciated catchments, and (2) debris flow occurrence and its effect on valley bottoms over the last thousand years.
In a 2006 storm, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and distributed collapse of gully walls imply that clear water was transformed to debris flow through progressive addition of sediment along gully lengths. In the first study, we analyze gully changes, reconstruct runoff conditions, and assess spatial distributions of debris flows to infer the processes and conditions necessary for debris flow initiation in glaciated catchments. Gully measurements suggest that sediment bulking requires steep gradients, abundant unstable material, and sufficient gully length. Reconstruction of runoff generated during the storm suggests that glaciers are important for generating the runoff necessary for debris flow initiation, particularly because infiltration capacities on glacial till covered surfaces well exceed measured rainfall rates. Runoff generation from glaciers and abundant loose debris at their termini explain why all debris flows in the storm initiated from proglacial areas. Proglacial areas that produced debris flows have steeper drainage networks with significantly higher elevations and lower drainage areas, suggesting that debris flows are associated with high elevation glaciers with relatively steep proglacial areas. This correlation reflects positive slope-elevation trends for the Mount Rainier volcano. An indirect effect of glacier change is thus the change in the distribution of ice-free slopes, which
influence a basin’s debris flow potential. These findings have implications for projections of debris flow activity in basins experiencing glacier change.
The second study uses a variety of dating techniques to reconstruct a chronology of debris flows in the Kautz Creek valley on the southwest flank of Mount Rainier (Washington). Dendrochronologic dating of growth disturbances combined with lichenometric techniques constrained five debris flow ages from 1712 to 1915 AD. We also estimated ages of three debris flows ranging in age from ca. 970 to 1661. Run-out distances served as a proxy for debris flow magnitude, and indicate that at least 11, 2, and 1 debris flow(s) have traveled at least 1, 3, and 5 km from the valley head, respectively since ca. 1650. Valley form reflects the frequency-magnitude relationship indicated by the chronology. In the upper, relatively steep valley, discrete debris flow snouts and secondary channels are abundant, suggesting a process of debris flow conveyance, channel plugging, and channel avulsion. The lower valley is characterized by relatively smooth surfaces, an absence of bouldery debris flow snouts, few secondary channels, and relatively old surface ages inferred from the presence of tephra layers. We infer that the lower valley is deposited on by relatively infrequent, large magnitude, low-yield strength debris flows like an event in 1947, which deposited wide, tabular lobes of debris outside of the main channel. Debris flows during the Little Ice Age (LIA) predominantly traveled no further than the upper valley. Stratigraphic evidence suggests that the main Kautz Creek channel was filled during the LIA, enhancing debris flow deposition on the valley surface and perhaps reducing run-out lengths. Diminished areas and gradients in front of glaciers during the LIA also likely contributed to decreased run-out lengths. These findings suggest that changes in debris flow source and depositional zones resulting from temperature and glacier cycles influence the magnitude and run-out distances of debris flows, and the dynamics of deposition in valley bottoms. / Graduation date: 2013
|
Page generated in 0.0553 seconds