• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 35
  • 35
  • 35
  • 15
  • 14
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

<b>AN INVESTIGATION INTO THE EFFECT OF LIGAND STRUCTURE ON CATALYTIC ACTIVITY IN WATER OXIDATION CATALYSIS MECHANISMS</b>

Gabriel S Bury (18403716) 20 April 2024 (has links)
<p dir="ltr">Insights from research into the natural photosynthetic processes are applied to inform the rational design of inorganic catalysts. The study of these synthetic systems – artificial photosynthesis – will lead towards the development of a device able to absorb light, convert and store the energy in the form of chemical bonds. The water-splitting reaction, a bottleneck of the photosynthetic process, is a key barrier to overcome in this endeavor. Thus, the focused study of water-oxidation catalysts able to facilitate this difficult reaction is performed, in order to develop a green-energy solution in the form of an artificial photosynthesis system.</p>
32

Catalytic Consequences of Active Site Environments in Brønsted Acid Aluminosilicates on Toluene Methylation

Sopuruchukwu A Ezenwa (18498339) 03 May 2024 (has links)
<p dir="ltr">Zeolites are microporous crystalline aluminosilicates that are widely used as catalysts for upgrading hydrocarbons and oxygenates to higher value chemicals and fuels. The substitution of tetrahedral Si<sup>4+</sup> with Al<sup>3+</sup> in a charge-neutral silica framework ([SiO<sub>4/2</sub>]) generates anionic centers ([AlO<sub>4/2</sub>]<sup>-</sup>), which charge-compensate Brønsted acid protons (H<sup>+</sup>) that serve as active sites for catalysis. Brønsted acid sites in aluminosilicates of diverse topologies have similar acid strength, but can be located within varying intracrystalline (or internal) microporous environments (0.4‒2 nm diameter) or at extracrystalline (or external) surfaces and mesoporous environments (>2 nm diameter); yet, catalytic diversity exists, <i>even</i> for a fixed zeolite framework topology, because micropores impose constraints on molecular access to and from intracrystalline active sites and provide van der Waals contacts that influence the stabilities of reactive intermediates and transition states. Tailoring the material properties of a given zeolite framework for targeted catalytic applications requires strategies to design both the bulk crystallite properties (e.g., morphology, active site density) that influence intracrystalline diffusion and the secondary environments that surround active sites and influence intrinsic kinetics, and further necessitates molecular-level insights to elucidate the influences of bulk and active site properties on catalysis. In this work, we provide synthetic and post-synthetic strategies to respectively tune active site environments within varying micropore voids and at external surfaces of zeolites, and develop gas-phase toluene methylation and liquid-phase mesitylene benzylation as probe reactions to quantify the catalytic consequences of active site environments on aromatic alkylation catalysis.</p><p dir="ltr">The MFI framework (orthorhombic phase) consists of 12 crystallographic distinct tetrahedral-sites and 26 unique framework oxygen atoms located around channels (~0.55 nm diameter) or channel intersections (~0.70 nm diameter). The synthesis of MFI zeolites using the conventional tetra-<i>n</i>-propylammonium (TPA<sup>+</sup>) organic structure directing agent (OSDA) is known to place framework Al and their attendant H<sup>+</sup> sites within the larger intersection environments, because electrostatic interactions are favorable between such locations of [AlO<sub>4/2</sub>]<sup>-</sup> and the quaternary N<sup>+</sup> center in TPA<sup>+</sup> that becomes positioned rigidly within channel intersections during crystallization. The methylation of toluene by dimethyl ether (DME; 403 K) on MFI-TPA zeolites of fixed active site densities (~2 Al per unit cell) result in <i>ortho</i>-xylene (<i>o</i>-X; ~65%) as the major product over <i>para</i>-xylene (<i>p</i>-X; ~27%) and <i>meta</i>-xylene (<i>m</i>-X; ~8%). In contrast, toluene methylation on MFI zeolites (~2 Al per unit cell) synthesized using non-conventional OSDAs, such as ethylenediamine (EDA) or 1,4-diazabicyclo[2.2.2]octane (DABCO), predominantly forms <i>p</i>-X (~75%) over <i>o</i>-X (~23%) and <i>m</i>-X (~2%). Within the subsets of MFI-TPA and MFI-EDA/DABCO zeolites, measured xylene formation rates and isomer selectivities are independent of crystallite sizes (0.1‒13 µm), toluene conversions (0.02‒2.0%) and external H<sup>+</sup> content (up to 9% external H<sup>+</sup> per total Al), indicating negligible effects of diffusion-enhanced secondary xylene isomerization reactions at intracrystalline or extracrystalline domains. The invariance of xylene isomer selectivity with reactant pressures (0.2‒9 kPa toluene, 25‒66 kPa DME) or methylating agent (1‒4 kPa methanol) indicate that differences in reactivity of toluene to form each xylene isomer reflects differences in the stabilities of their respective kinetically relevant transition states that share the same reactive intermediate. Measured xylene isomer formation rate constants and rate constant ratios, obtained from mechanism-derived rate expressions and interpreted using transition state theory formalisms, are used alongside density functional theory (DFT) calculations to reveal that intersection void environments (~0.70 nm diameter) similarly stabilize all three xylene transition states over unconfined surfaces (>2 nm diameter) without altering the established aromatic substitution patterns, while channel void environments (~0.55 nm diameter) preferentially destabilize bulkier <i>o</i>-X and <i>m</i>-X transition states thereby resulting in high intrinsic <i>p</i>-X selectivity. DFT calculations reveal that the ability of protonated DABCO complexes to reorient within MFI intersections and participate in additional hydrogen-bonding interactions with anionic Al centers during synthesis, facilitates the placement of Al in smaller channel environments that are less favored by TPA<sup>+</sup>. These molecular-level details, enabled by combining synthesis, characterization, kinetics and DFT, establish a mechanistic link between OSDA structure, active site placement and transition state stability, and provide active site design strategies orthogonal to crystallite design approaches that rely on complex reaction-diffusion phenomena.</p><p dir="ltr">For various reactions including toluene methylation at higher reaction temperatures (573‒773 K) and toluene conversions (>10%), extracrystalline H<sup>+</sup> sites in MFI zeolites are reported to influence reactivity, selectivity, and deactivation behavior during catalysis in undesired ways. Post-synthetic chemical treatments to passivate external H<sup>+</sup> sites on MFI zeolites result in unintended (but not always undesirable) changes to bulk structural properties and Al and H<sup>+</sup> contents. The number of extracrystalline H<sup>+</sup> sites is difficult to quantify using conventional spectroscopic or titrimetric methods, especially when present in dilute amounts on samples whose surfaces have been passivated. The systematic treatment of MFI zeolites (2.4, 5.7 and 7.1 Al per unit cell) using ammonium hexafluorosilicate (AHFS) at varying treatment duration times, AHFS concentrations and number of successive treatments resulted in MFI zeolites that retain their bulk structural properties and total Al and H<sup>+</sup> contents, except for one parent MFI sample containing a significant amount of non-framework Al species. The benzylation of mesitylene by dibenzyl ether (363 K) occurs exclusively at external H<sup>+</sup> sites because the bulky 1,3,5-trimethyl-2-benzylbenzene product is sterically prevented from forming at intracrystalline H<sup>+</sup> sites. The intrinsic zero-order rate constant (per external H<sup>+</sup>) for mesitylene benzylation is extracted from rate measurements (per total Al) on a suite of untreated MFI samples with known amounts of external H<sup>+</sup> sites (1‒15% external H<sup>+</sup> per total Al) quantified using bulky 2,6-di-<i>tert</i>-butylpyridine base titrants. Measured zero-order rate constants on AHFS-treated MFI zeolites are used to quantify the extent to which AHFS treatments passivate external H<sup>+</sup> sites, revealing efficacies that depend on the specific treatment conditions and the parent sample used. The developed kinetic methods demonstrate the utility of catalytic probes, when compared to stoichiometric probes based on spectroscopic or titration methods, in amplifying and quantifying dilute concentrations of external H<sup>+</sup> sites on zeolites. The methods enable comparisons of the efficacy of various post-synthetic passivation strategies and permit rigorous assessments of the influence of external H<sup>+</sup> during acid catalysis.</p><p dir="ltr">Overall, this work provides (post-)synthetic strategies to tune active site environments within intracrystalline micropores or at extracrystalline surfaces and develops quantitative kinetic probes that enable a molecular-level understanding of catalytic consequences of active site environments on aromatic alkylation reactions. Taken together, the methodology and findings of this study have broader implications in zeolite catalyst design for selectively upgrading traditional fossil feedstocks (crude oil and shale gas) and emerging feedstocks (biomass and waste plastics).</p>
33

Synthesis and Characterization of Copper-Exchanged Zeolite Catalysts and Kinetic Studies on NOx Selective Catalytic Reduction with Ammonia

Arthur J. Shih (5930264) 16 January 2019 (has links)
<p>Although Cu-SSZ-13 zeolites are used commercially in diesel engine exhaust after-treatment for abatement of toxic NO<sub>x</sub> pollutants via selective catalytic reduction (SCR) with NH<sub>3</sub>, molecular details of its active centers and mechanistic details of the redox reactions they catalyze, specifically of the Cu(I) to Cu(II) oxidation half-reaction, are not well understood. A detailed understanding of the SCR reaction mechanism and nature of the Cu active site would provide insight into their catalytic performance and guidance on synthesizing materials with improved low temperature (< 473 K) reactivity and stability against deactivation (e.g. hydrothermal, sulfur oxides). We use computational, titration, spectroscopic, and kinetic techniques to elucidate (1) the presence of two types of Cu<sup>2+</sup> ions in Cu-SSZ-13 materials, (2) molecular details on how these Cu cations, facilitated by NH<sub>3</sub> solvation, undergo a reduction-oxidation catalytic cycle, and (3) that sulfur oxides poison the two different types of Cu<sup>2+</sup> ions to different extents at via different mechanisms. </p><p><br></p> <p> </p> <p>Copper was exchanged onto H-SSZ-13 samples with different Si:Al ratios (4.5, 15, and 25) via liquid-phase ion exchange using Cu(NO<sub>3</sub>)<sub>2</sub> as the precursor. The speciation of copper started from the most stable Cu<sup>2+</sup> coordinated to two anionic sites on the zeolite framework to [CuOH]<sup>+</sup> coordinated to only one anionic site on the zeolite framework with increasing Cu:Al ratios. The number of Cu<sup>2+</sup> and [CuOH]<sup>+</sup> sites was quantified by selective NH<sub>3</sub> titration of the number of residual Brønsted acid sites after Cu exchange, and by quantification of Brønsted acidic Si(OH)Al and CuOH stretching vibrations from IR spectra. Cu-SSZ-13 with similar Cu densities and anionic framework site densities exhibit similar standard SCR rates, apparent activation energies, and orders regardless of the fraction of Z<sub>2</sub>Cu and ZCuOH sites, indicating that both sites are equally active within measurable error for SCR. </p><p><br></p> <p> </p> <p>The standard SCR reaction uses O<sub>2</sub> as the oxidant (4NH<sub>3</sub> + 4NO + O<sub>2</sub> -> 6H<sub>2</sub>O + 4N<sub>2</sub>) and involves a Cu(I)/Cu(II) redox cycle, with Cu(II) reduction mediated by NO and NH<sub>3</sub>, and Cu(I) oxidation mediated by NO and O<sub>2</sub>. In contrast, the fast SCR reaction (4NH<sub>3</sub> + 2NO + 2NO<sub>2</sub> -> 6H<sub>2</sub>O + 4N<sub>2</sub>) uses NO<sub>2</sub> as the oxidant. Low temperature (437 K) standard SCR reaction kinetics over Cu-SSZ-13 zeolites depend on the spatial density and distribution of Cu ions, varied by changing the Cu:Al and Si:Al ratio. Facilitated by NH<sub>3</sub> solvation, mobile Cu(I) complexes can dimerize with other Cu(I) complexes within diffusion distances to activate O<sub>2</sub>, as demonstrated through X-ray absorption spectroscopy and density functional theory calculations. Monte Carlo simulations are used to define average Cu-Cu distances. In contrast with O<sub>2</sub>-assisted oxidation reactions, NO<sub>2</sub> oxidizes single Cu(I) complexes with similar kinetics among samples of varying Cu spatial density. These findings demonstrate that low temperature standard SCR is dependent on Cu spatial density and requires NH<sub>3</sub> solvation to mobilize Cu(I) sites to activate O<sub>2</sub>, while in contrast fast SCR uses NO<sub>2</sub> to oxidize single Cu(I) sites. </p><p><br></p> <p> </p> <p>We also studied the effect of sulfur oxides, a common poison in diesel exhaust, on Cu-SSZ-13 zeolites. Model Cu-SSZ-13 samples exposed to dry SO<sub>2</sub> and O<sub>2</sub> streams at 473 and 673 K. These Cu-SSZ-13 zeolites were synthesized and characterized to contain distinct Cu active site types, predominantly either divalent Cu<sup>2+</sup> ions exchanged at proximal framework Al sites (Z<sub>2</sub>Cu), or monovalent CuOH+ complexes exchanged at isolated framework Al sites (ZCuOH). On the model Z<sub>2</sub>Cu sample, SCR turnover rates (473 K, per Cu) catalyst decreased linearly with increasing S content to undetectable values at equimolar S:Cu molar ratios, while apparent activation energies remained constant at ~65 kJ mol<sup>-1</sup>, consistent with poisoning of each Z<sub>2</sub>Cu site with one SO<sub>2</sub>-derived intermediate. On the model ZCuOH sample, SCR turnover rates also decreased linearly with increasing S content, yet apparent activation energies decreased monotonically from ~50 to ~10 kJ mol<sup>-1</sup>, suggesting that multiple phenomena are responsible for the observed poisoning behavior and consistent with findings that SO<sub>2</sub> exposure led to additional storage of SO<sub>2</sub>-derived intermediates on non-Cu surface sites. Changes to Cu<sup>2+</sup> charge transfer features in UV-Visible spectra were more pronounced for SO<sub>2</sub>-poisoned ZCuOH than Z<sub>2</sub>Cu sites, while X-ray diffraction and micropore volume measurements show evidence of partial occlusion of microporous voids by SO<sub>2</sub>-derived deposits, suggesting that deactivation may not only reflect Cu site poisoning. Density functional theory calculations are used to identify the structures and binding energies of different SO<sub>2</sub>-derived intermediates at Z<sub>2</sub>Cu and ZCuOH sites. It is found that bisulfates are particularly low in energy, and residual Brønsted protons are liberated as these bisulfates are formed. These findings indicate that Z<sub>2</sub>Cu sites are more resistant to SO<sub>2</sub> poisoning than ZCuOH sites, and are easier to regenerate once poisoned. </p>
34

Catalytic Consequences of Active Site Speciation, Density, Mobility and Stability on Selective Catalytic Reduction of NO<sub>x</sub> with Ammonia over Cu-Exchanged Zeolites

Ishant Khurana (7307489) 16 October 2019 (has links)
<p>Selective catalytic reduction (SCR) of NO<sub>x </sub>using NH<sub>3 </sub>as a reductant (4NH<sub>3</sub>+ 4NO + O<sub>2</sub> 6H<sub>2</sub>O + 4N<sub>2</sub>) over Cu-SSZ-13 zeolites is a commercial technology used to meet emissions targets in lean-burn and diesel engine exhaust. Optimization of catalyst design parameters to improve catalyst reactivity and stability against deactivation (hydrothermal and sulfur poisoning) necessitates detailed molecular level understanding of structurally different active Cu sites and the reaction mechanism. With the help of synthetic, titrimetric, spectroscopic, kinetic and computational techniques, we established new molecular level details regarding 1) active Cu site speciation in monomeric and dimeric complexes in Cu-SSZ-13, 2) elementary steps in the catalytic reaction mechanism, 3) and deactivation mechanisms upon hydrothermal treatment and sulfur poisoning.</p><p>We have demonstrated that Cu in Cu-SSZ-13 speciates as two distinct isolated sites, nominally divalent Cu<sup>II </sup>and monovalent [Cu<sup>II</sup>(OH)]<sup>+ </sup>complexes exchanged at paired Al and isolated Al sites, respectively. This Cu site model accurately described a wide range of zeolite chemical composition, as evidenced by spectroscopic (Infrared and X-ray absorption) and titrimetric characterization of Cu sites under <i>ex situ </i>conditions and <i>in situ </i>and <i>operando </i>SCR reaction conditions. Monovalent [Cu<sup>II</sup>(OH)]<sup>+ </sup>complexes have been further found to condense to form multinuclear Cu-oxo complexes upon high temperature oxidative treatment, which have been characterized using UV-visible spectroscopy, CO-temperature programmed reduction and dry NO oxidation as a probe reaction. Structurally different isolated Cu sites have different susceptibilities to H<sub>2 </sub>and He reductions, but are similarly susceptible to NO+NH<sub>3 </sub>reduction and have been found to catalyze NO<sub>x </sub>SCR reaction at similar turnover rates (per Cu<sup>II</sup>; 473 K) via a Cu<sup>II</sup>/Cu<sup>I </sup>redox cycle, as their structurally different identities are masked by NH<sub>3 </sub>solvation during reaction. </p><p><br></p><p>Molecular level insights on the low temperature Cu<sup>II</sup>/Cu<sup>I </sup>redox mechanism have been obtained using experiments performed <i>in situ</i>and <i>in operando </i>coupled with<i></i>theory. Evidence has been provided to show that the Cu<sup>II</sup> to Cu<sup>I </sup>reduction half-cycle involves single-site Cu reduction of isolated Cu<sup>II </sup>sites with NO+NH<sub>3</sub>, which is independent of Cu spatial density. In contrast, the Cu<sup>I</sup> to Cu<sup>II </sup>oxidation half-cycle involves dual-site Cu oxidation with O<sub>2 </sub>to form dimeric Cu-oxo complexes, which is dependent on Cu spatial density. Such dual-site oxidation during the SCR Cu<sup>II</sup>/Cu<sup>I </sup>redox cycle requires two Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2</sub>sites, which is enabled by NH<sub>3</sub>solvation that confers mobility to isolated Cu<sup>I </sup>sites and allows reactions between two Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2 </sub>species and O<sub>2</sub>. As a result, standard SCR rates depend on Cu proximity in Cu-SSZ-13 zeolites when Cu<sup>I </sup>oxidation steps are kinetically relevant. Additional unresolved pieces of mechanism have been investigated, such as the reactivity of Cu dimers, the types of reaction intermediates involved, and the debated role of Brønsted acid sites in the SCR cycle, to postulate a detailed reaction mechanism. A strategy has been discussed to operate either in oxidation or reduction-limited kinetic regimes, to extract oxidation and reduction rate constants, and better interpret the kinetic differences among Cu-SSZ-13 catalysts.</p><p><br></p><p>The stability of active Cu sites upon sulfur oxide poisoning has been assessed by exposing model Cu-zeolite samples to dry SO<sub>2 </sub>and O<sub>2 </sub>streams at 473 and 673 K, and then analyzing the surface intermediates formed via spectroscopic and kinetic assessments. Model Cu-SSZ-13 zeolites were synthesized to contain distinct Cu active site types, predominantly either divalent Cu<sup>II </sup>ions exchanged at proximal framework Al (Z<sub>2</sub>Cu), or monovalent [Cu<sup>II</sup>OH]<sup>+ </sup>complexes exchanged at isolated framework Al (ZCuOH). SCR turnover rates (473 K, per Cu) decreased linearly with increasing S content to undetectable values at equimolar S:Cu ratios, consistent with poisoning of each Cu site with one SO<sub>2</sub>-derived intermediate. Cu and S K-edge X-ray absorption spectroscopy and density functional theory calculations were used to identify the structures and binding energies of different SO<sub>2</sub>-derived intermediates at Z<sub>2</sub>Cu and ZCuOH sites, revealing that bisulfates are particularly low in energy, and residual Brønsted protons are liberated at Z<sub>2</sub>Cu sites as bisulfates are formed. Molecular dynamics simulations also show that Cu sites bound to one HSO<sub>4</sub><sup>- </sup>are immobile, but become liberated from the framework and more mobile when bound to two HSO<sub>4</sub><sup>-</sup>. These findings indicate that Z<sub>2</sub>Cu sites are more resistant to SO<sub>2</sub>poisoning than ZCuOH sites, and are easier to regenerate once poisoned.</p><p><br></p><p>The stability of active Cu sites on various small-pore Cu-zeolites during hydrothermal deactivation (high temperature steaming conditions) has also been assessed by probing the structural and kinetic changes to active Cu sites. Three small-pore, eight-membered ring (8-MR) zeolites of different cage-based topology (CHA, AEI, RTH) have been investigated. With the help of UV-visible spectroscopy to probe the Cu structure, in conjunction with measuring differential reaction kinetics before and after subsequent treatments, it has been suggested that the RTH framework imposes internal transport restrictions, effectively functioning as a 1-D framework during SCR catalysis. Hydrothermal aging of Cu-RTH results in complete deactivation and undetectable SCR rates, despite no changes in long-range structure or micropore volume after hydrothermal aging treatments and subsequent SCR exposure, highlighting beneficial properties conferred by double six-membered ring (D6R) composite building units. Exposure aging conditions and SCR reactants resulted in deleterious structural changes to Cu sites, likely reflecting the formation of inactive copper-aluminate domains. Therefore, the viability of Cu-zeolites for practical low temperature NO<sub>x </sub>SCR catalysis cannot be inferred solely from assessments of framework structural integrity after aging treatments, but also require Cu active site and kinetic characterization after aged zeolites are exposed to low temperature SCR conditions.</p>
35

DISTINCT ROLES OF THE aD HELIX IN aCAMKII ACTIVATION CHARACTERIZED USING A DE NOVO MUTATION FROM CHILDREN WITH LEARNING DISABILITIES

Walter Saide (16650807) 07 August 2023 (has links)
<p>This dissertation describes the effects of a <i>de novo</i> mutation of CaMKII found in children with learning disabilities and describes its effect on catalytic activity. We develop a malachite green assay for the measurement of CaMKII activation and use it for high-throughput chemical screening to identify CaMKII inhibitors and enhancers. We also propose a new mechanism of regulation of CaMKII activity by ADP.</p><p><br></p>

Page generated in 0.1201 seconds