Spelling suggestions: "subject:"cathode "" "subject:"kathode ""
201 |
Temperature Dependence of Resistance of a Ni-rich Li-ion CathodeTöyrä Mendez, Ewa Cecilia January 2020 (has links)
Understanding the degradation mechanisms of Li-ion batteries is essential to gain insights into battery aging. The primary research area of this thesis is the positive electrode, NMC811. The purpose of the thesis is to understand how low and elevated temperatures affect the aging of NMC811, by considering the effects on resistance. The aim of the thesis is to investigate the degradation mechanisms of NMC811. Here, three-electrode Li-ion pouch cells are assembled with LiNi8Mn1Co1O2 (NMC811) as the positive electrode, graphite as the negative, gold wire as the reference electrode, and LiPF6 as the electrolyte. The positive electrode impedance is recorded at temperatures –10, 22, and 40 ºC. Also, symmetric and half cells are built for validation measurements. The Nyquist diagrams are fitted through equivalent circuits to determine the cells’ impedance at voltages 3.8 and 3.0 V vs Li+/Li. The resistances observed and analyzed in this project are the high-frequency resistance, the contact resistance, the charge transfer resistance, and the resistance due to the electrode–electrolyte interphase. By comparing these resistances, it is observed that the charge transfer resistance has the highest dependence on the ambient temperature. The increase in charge transfer resistance at –10 ºC is suggested to depend on the Ni-rich electrode, which tends to contribute to volume changes in the electrode, affecting the intercalation and de-intercalation of Li-ions. The resistance reduces significantly at 40 ºC, due to the loss of lithium inventory in the active material. This thesis has thus shown that temperature has a significant effect on cell internal resistance, especially on the electrode–electrolyte interface, which describes the charge transfer reactions.
|
202 |
Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxidesJiang, Yihong 28 October 2015 (has links)
The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry.
Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during SOM electrolysis. After electrolysis, upon cooling, silicon crystals precipitated out from the Si-Sn liquid alloy. The presence of high-purity silicon crystals in the liquid tin cathode was confirmed by SEM/EDS. The fluoride based flux was also optimized to improve YSZ membrane stability for long-term use.
|
203 |
Experimental Study of a Low-Voltage Pulsed Plasma Thruster for NanosatellitesPatrick M Gresham (12552244) 17 June 2022 (has links)
<p>The commercial CubeSat industry has experienced explosive growth recently, and with falling costs and growing numbers of launch providers, the trend is likely to continue. The scientific missions CubeSats could complete are expanding, and this has resulted in a demand for reliable high specific impulse nanosatellite propulsion systems. Interest in liquid-fed pulsed plasma thrusters (LF-PPTs) to fulfill this role has grown lately. Prior work on a nanosatellite LF-PPT was done in the Purdue Electric Propulsion and Plasma Laboratory, but its high operational voltage and electrode size would be disadvantageous for integration on a CubeSat, which have strict volume limitations and provide only tens of Watts in power at low voltages. This work aims to address those disadvantages and further advance the development of a nanosatellite LF-PPT by reducing the operating voltage and removing long plate electrodes to prevent energy losses on components other than the expelled plasma sheet. Two major objectives are pursued: to construct a coaxial pulsed plasma thruster operating with 10s to 100s of volts and to characterize the temporal evolution of the discharge parameters in this low-voltage operation scenario. </p>
<p>It took three experimental design iterations, all of which used a 260 <em>uF</em> , 400 <em>V</em> film capacitor, to arrive at a functional coaxial pulsed plasma thruster. First, a button gun was tested. It produced a peak current of ~16<em> kA</em>, which serves as the expected maximum for the later experiments. Due to the presence of parasitic arcing, it revealed that electrical lines needed to be removed from vacuum chamber to enable testing at a wide range of pressures. Second, a coaxial PPT was designed, built, and tested. This design confirmed operation at discharge voltages <100 <em>V</em> across the plasma, achieving one of the project’s aims, and produced a peak current of 7.4 <em>kA</em>. However, necessity to better align the cathode and provide an unobstructed camera view for observation of the discharge column attachment to the cathode surface forced additional system redesign. Third, a revised coaxial PPT was built and tested. Using air as a propellant, the discharge generated a peak current of 10.4 <em>kA</em> at a mass flow rate of 2 mgs. The PPT cathode was imaged with an ICCD camera over a wide range of pressures, and the photos indicated “spotless” diffuse arc attachment to the cathode, which serves as evidence to expect low erosion rates. The direct measurements of the cathode erosion rate are planned for future. </p>
|
204 |
Electric arc-contact interaction in high current gasblast circuit breakersNielsen, Torbjörn January 2001 (has links)
NR 20140805
|
205 |
The possibility of using BOD on-line measurement.Zhang, Tianzi January 2012 (has links)
BOD (Biochemical Oxygen Demand) is one of the important parameters in wastewater treatment technology, it normally takes five days to get the result. Using MFC (Microbial Fuel Cell) to build up a small on-line system to measure BOD will reduce to operating time to 20 minutes. In this report, the MFC BOD on-line measurement was processed in order to test if this rapid way would work in practical usage. The experiment used secondary sedimentation sludge as the bacteria source on the MFC anode pattern with GGA (Glucose and Glutamic Acid solution) as an electron producer, and the 30 minutes voltage value changing curves was gotten by measuring the voltage. At the end the curve was analyzed and compared with the real BOD value in order to get the conclusion. The BOD on-line measurement is quite promising and efficient when multi-samples are needed to be tested.
|
206 |
Analysis for reaction mechanism of cathode materials for lithium-sulfur batteries / リチウム硫黄電池における正極材料の反応機構の解析Xiao, Yao 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第23286号 / 人博第1001号 / 新制||人||236(附属図書館) / 2020||人博||1001(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 田部 勢津久, 教授 高木 紀明 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
207 |
Elucidation of reaction mechanism at the anode/electrolyte interface and cathode material for rechargeable magnesium battery / マグネシウム二次電池負極/電解質界面および正極材料における反応機構の解明Tuerxun, Feilure 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第23288号 / 人博第1003号 / 新制||人||236(附属図書館) / 2020||人博||1003(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 高木 紀明, 教授 中村 敏浩 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
208 |
BUILDING BETTER AQUEOUS ZINC BATTERIESMing, Fangwang 22 March 2022 (has links)
Aqueous zinc ion storage system has been deemed as one of the most promising alternatives due to its high capacity of zinc metal anode, low cost, and high safety characteristics. Recently, significant attempts have been made to produce highperformance aqueous Zn batteries. (AZBs) and great progress has been achieved. Yet there are a lot of issues still exist and need to be further optimized. In this thesis, we proposed several strategies to tackle these challenges and finally optimize the overall battery performance, including metal anode protection, cathode structural engineering, and rational electrolyte design.
In the present thesis, we first developed the ZnF2 layer coated Zn metal anode via a simple plasma treatment method. The plasma treated Zn anode leads to dendrite-free Zn electrodeposition with lower overpotential. Density function theory calculation results demonstrate that the Zn diffusion energy barrier can be greatly reduced on the ZnF2 surface. Benefiting from these merits, the symmetric cell and full cell exhibited much improved electrolchemical performance and stability. Afterthen, We synthesised a layered Mg2+-intercalated V2O5 as the cathode material for AZBs. The large interlayer spacing reachs up to 13.4 A, allowing for efficient Zn2+ (de)insertion. As a result, the porous Mg0.34V2O5・nH2O cathodes can provide high capacities as well as long-term durability. We then recongnized that most of the parasitic side reactions are related to the aqueous electrolyte. We therefore further designed a hybrid electrolyte to realize the anode-free Zn metal batteries. It is demonstrated that in the presence of propylene carbonate, triflate anions are involved in the Zn2+ solvation sheath structure. The unique solvation structure results in the reduction of anions, thus forming a hydrophobic solid electrolyte interphase. Consequently, in the hybrid electrolyte, both Zn anodes and cathodes show excellent stability and reversibility. More importantly, we design an anode-free Zn metal battery, which exhibits good cycling stability (80% capacity retention after 275 cycles at 0.5 mA cm–2).
|
209 |
Electrochemical Behaviors of the Electrodes for Proton Conducting Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC)Sun, Shichen 22 October 2018 (has links)
Proton conducting intermediate temperature (600oC-400oC) solid oxide fuel cells (IT-SOFC) have many potential advantages for clean and efficient power generation from readily available hydrocarbon fuels. However, it still has many unsolved problems, especially on the anode where the fuel got oxidized and the cathode where oxygen got reduced. In this study, for the anode, the effects of hydrogen sulfite (H2S) and carbon dioxide (CO2) as fuel contaminants were studied on the nickel (Ni) based cermet anode of proton conducting IT-SOFC using proton conducting electrolyte of BaZr0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb). Both low-ppm level H2S and low-percentage level CO2 caused similar poisoning effects on the anode reaction. The H2S poisoning effect was also found to be much less than on oxide-ion conducting SOFC, which is attributed to the absence of water evolution for the anode reaction in proton conducting SOFC. In addition, the H2S/CO2 poisoning mechanisms were investigated using X-ray diffraction, energy dispersive spectroscopy (EDS), Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). For H2S, other than possible sulfur dissolution into BZCYYb, no bulk reaction was found, suggesting sulfur adsorption contributes to the reduced performance. For CO2, reaction with BZCYYb to form BaCO3 and CeO2 is identified and is believed to be the reason for the sudden worsening in CO2 poisoning as temperature drops below ~550oC. For the cathode, several representative SOFC cathodes including silver (Ag), La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), LSCF-BZCYYb composite, and Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) were evaluated based on BZCYYb electrolyte. LSCF give similar high interfacial resistance as Ag, while LSCF-BZCYYb composite cathode shows lower interfacial resistance, suggesting LSCF behaves like pure electronic conductor cathode in this case. For BSCF, it shows smallest interfacial resistance and the charge transfer process appears to accelerate with the introduction of H2O, while oxygen adsorption/transport seem to slow down due to adsorbed H2O. Furthermore, CO2 was shown to cause poisoning on the BSCF cathode, yet the poisoning was significantly reduced with the co-presence of water. The results suggest that although BSCF seem to display mixed proton-electronic conduction, its strong affinity to H2O may inhibit the oxygen reduction reaction on the cathode and new cathode materials still need to be designed.
|
210 |
Development of Novel Cathodes for High Energy Density Lithium BatteriesBhargav, Amruth 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lithium based batteries have become ubiquitous with our everyday life. They have propelled a generation of smart personal electronics and electric transport. Their use is now percolating to various fields as a source of energy to facilitate the operation of devices from nanoscale to mega scale. This need for a portable energy source has led to tremendous scientific interest in this field to develop electrochemical devices like batteries with higher capacities, longer cycle life and increased safety at a low cost. To this end, the research presented in this thesis focuses on two emerging and promising technologies called lithium-oxygen (Li-O₂) and lithium-sulfur (Li-S) batteries. These batteries can offer an order of magnitude higher capacities through cheap, environmentally safe and abundant elements, namely oxygen and sulfur. The first work introduces the concept of closed system lithium-oxygen batteries wherein the cell contains the discharge product of Li-O₂ batteries namely, lithium peroxide (Li₂O₂) as the starting active material. The reversibility of this system is analyzed along with its rate performance. The possible use of such a cathode in a full cell is explored. Also, this concept is used to verify if all the lithium can be extracted from the cathode in the first charge. In the following work, lithium peroxide is chemically synthesized and deposited in a carbon nanofiber matrix. This forms a free-standing cathode that shows high reversibility. It can be cycled up to 20 times, and while using capacity control protocol, a cycle life of 50 is obtained. The cause of cell degradation and failure is also analyzed. In the work on full cell lithium-sulfur system, a novel electrolyte is developed that can support reversible lithium insertion and extraction from a graphite anode. A method to deposit solid lithium polysulde is developed for the cathode. Coupling a lithiated graphite anode with the cathode using the new electrolyte yields a full cell whose performance is characterized and its post-mortem analysis yields information on the cell failure mechanism. Although still in their developmental stages, Li-O₂ and Li-S batteries hold great promise to be the next generation of lithium batteries, and these studies make a fundamental contribution towards novel cathode and cell architecture for these batteries.
|
Page generated in 0.0426 seconds