• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 30
  • 17
  • 12
  • 10
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ELECTRODEPOSITION OF SULFIDE-CONTAINING THIN FILMS, AND THEIR APPLICATION TO ELECTROCHEMICAL SYSTEMS

Fan, Li 01 May 2019 (has links)
This dissertation presents studies of both anodic and cathodic electrodeposition of thin films, and their applications as supercapacitors and electrocatalysts for polysulfide reduction and oxidation.
2

Untersuchungen über cyclische Polysulfide, nonproteinogene Aminosäuren und CS-Lyase in den Samen von Parkia speciosa Hassk

Susilo, Rudy, January 1981 (has links)
Thesis (doctoral)--Freie Universität Berlin, 1981.
3

Studies towards the synthesis of marine polysulfide natural products

Robinson, Paul A. January 2010 (has links)
Biologically active compounds isolated from marine sources have had increasing interest in recent years with significant research going into the discovery and isolation of novel marine polysulfide natural products. Varacin, probably the most widely studied marine polysulfide to date was the subject of much debated structure elucidation attempts, and more recently several successful synthetic approaches have been published. The work published aims to increase our understanding of marine polysulfide compounds existence in nature and determine the origins of their biological activity. (+)-Aplidium trisulfide which was isolated from Aplidium Sp. D in 1989 by Munro et al has been shown to exhibit in vitro antimicrobial, antileukemic and cytotoxic properties. These intriguing biological effects have led our work towards developing a novel synthetic route toward aplidium trisulfide by both chiral and racemic routes. Aplidium trisulfide is of special significance as it is very rare to isolate enantiomeric compounds from marine sources. Two other closely related marine alkaloids fasmerianamine A and B are also of synthetic interest to us due to their close resemblance to the structure of aplidium trisulfide. The fasmerianamines were isolated by Copp et al from the marine ascidian Hypsistozoa fasmeriana in 2001.
4

Advanced research on Lithium-Sulfur battery : studies of lithium polysulfides.

Cabelguen, Pierre-Etienne January 2014 (has links)
This thesis was devised as a fundamental study of the Li-S system by the use of 7Li Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR), X-ray Absorption Near- Edge Structure (XANES), and Non-Resonant Inelastic X-ray Scattering (NRIXS). The first part of this thesis reports the first evidence of a stable solid-phase intermediate between elemental sulfur (α-S8) and Li2S, Li2S6, which can be used to understand deeper Li-S battery. The second part of this thesis is based on operando XANES measurements made in the Argonne Photon Source (APS).Linear combination fit (LCF) analyses are performed to interpret the data; and, noticeably, the distinction between short-chain and long-chain polysulfides can be made due to the use of proper reference materials. The results reveal the first detailed observation of typical sulfur redox chemistry upon cycling, showing how sulfur fraction (under-utilization) and sulfide precipitation impact capacity. It also gives new insights into the differences between the charge and discharge mechanisms, resulting in the hysteresis of the cycling profile. Operando XANEs were also performed on het-treated material, which exhibits a particular electrochemical signature, which has never explained. After a preliminary electrochemical study by potentiodynamic cycling with galvanostatic acceleration (PCGA), operando XANES measurements at the sulfur K-edge are performed on heat-treated PCNS. Noticeably, the difference in the XANES signatures of the pristine and the recharged state shows the irreversible process that occurs during the first discharges. At last, electrolytes are investigated by the compilation of quantitative physico-chemical parameters – viscosity, ionic conductivity, and solubility of Li2S and Li2S6 – on novel class of solvents that are glymes with non-polar groups and acetonitrile (ACN) complexed with LiTFSI. 1,1,2,2-Tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (HFE) is chosen to decrease their viscosities. (ACN)2:LiTFSI attracts particular attention because of the particularly low Li2Sn solubility and. Its good electrochemical performance when mixed with 50 vol% HFE. Operando XANES proves the formation of polysulfides in this electrolyte, although constrains imposed by this novel electrolyte to the XANES experiment complicate the data analysis. The low energy feature evolution shows a more progressive mechanism involved in this electrolyte, which could be linked to the particularly low Li2Sn solubility
5

Advanced research on Lithium-Sulfur battery : studies of lithium polysulfides.

Cabelguen, Pierre-Etienne January 2013 (has links)
This thesis was devised as a fundamental study of the Li-S system by the use of 7Li Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR), X-ray Absorption Near-Edge Structure (XANES), and Non-Resonant Inelastic X-ray Scattering (NRIXS). The first part of this thesis is dedicated to the synthesis of solid state linear chain polysulfides in order to use them as reference compounds in the following experiments. 7Li NMR shows that Li2S and Li2S6 exhibit single but different Li environments, while the others stoichiometry targeted consist of a mixture of them. This is the first report of a stable solid-phase intermediate between elemental sulfur (α-S8) and Li2S. The second part of this thesis is based on operando XANES measurements made in the Argonne Photon Source (APS). Linear combination fit (LCF) analyses are performed to interpret the data; and, noticeably, the distinction between short-chain and long-chain polysulfides can be made due to the use of proper reference materials. The results reveal the first detailed observation of typical sulfur redox chemistry upon cycling, showing how sulfur fraction (under-utilization) and sulfide precipitation impact capacity. It also gives new insights into the differences between the charge and discharge mechanisms, resulting in the hysteresis of the cycling profile. Heat-treated PCNS/S exhibits a particular electrochemical signature, which has never explained. Operando XANES measurements at the sulfur K-edge are performed on heat-treated PCNS. Noticeably, the difference in the XANES signatures of the pristine and the recharged state shows the irreversible process that occurs during the first discharges. At last, electrolytes are investigated by the compilation of quantitative physico-chemical parameters on novel class of solvents that are glymes with non-polar groups and acetonitrile (ACN) complexed with LiTFSI. (ACN)2:LiTFSI attracts particular attention because of the particularly low Li2Sn solubility and. Its good electrochemical performance when mixed with 50 vol% HFE. Operando XANES proves the formation of polysulfides in this electrolyte, and the low energy feature evolution shows a more progressive mechanism involved in this electrolyte, which could be linked to the particularly low Li2Sn solubility.
6

Mitigating Polysulfide Shuttling in Li-S Battery

Li, Mengliu 16 November 2019 (has links)
The energy source shortage has become a severe issue, and solving the problem with renewable and sustainable energy is the primary trend. Among the new generation energy storage, lithium-sulfur (Li-S) battery stands out for its low cost, high theoretical capacity (1,675 mAh g-1), and environmentally friendly properties. Intensive researches have been focusing on this system and significant improvement has been achieved. However, several problems still need to be resolved for its practical application, especially for the “shuttle effect” issue coming from the dissolved intermediate polysulfides, which could cause rapid capacity decay and low Coulombic efficiency (CE). Several methods are proposed to eliminate this issue, including using interlayers, modifying separators, and protecting the lithium anode. A carbon interlayer is first introduced to compare the function of the graphene and carbon nanotubes (CNTs), while the CNTs performs better with its higher conductivity and 3D network structure. The following study is conducted based on this finding. A more efficient method is to modify the separator with functional materials. 1) The dissolved polysulfide (Sn2-) could be repelled by electrostatic forces. With the Poly (styrene sulfonate) (PSS), the separator could function as an anion barrier to the intermediate polysulfides. 2D ultra-thin zinc benzimidazolate coordination polymer has the OH- functional groups and works with the same mechanism. 2) A novel covalent organic framework (COF) has a relatively small pore size, which can block the polysulfide and restrain them at the cathode side. 3) Metal-organic framework (MOF) materials have the adjustable pore size and structure, which can absorb and trap polysulfides within their cavities. Moreover, the dense stacking of the MOF particles creates a physical blocking for the polysulfides, which efficiently suppresses the diffusion process. Protection of the lithium surface directly with an artificial layer or a solid electrolyte interphase (SEI) can inhibit the polysulfide deposition and suppress the lithium dendrite. A polyvinylidene difluoride (PVDF) membrane is used as an artificial film on lithium anode, which could greatly enhance the battery cyclability and CE. Future work will be conducted based on this concept, especially building an artificial SEI.
7

Analyse du rôle des dérivés de polysulfanes de l’ail dans le réseau microtubulaire et l'autophagie : l’effet anticancéreux dans le cancer colorectal / Analysis of the role of garlic-derived polysulfanes on the microtubular network and autophagy : anticancer effect in colorectal cancer

Yagdi Efe, Esma 18 December 2017 (has links)
Le cancer colorectal est une cause majeure de morbidité et de mortalité dans le monde entier. Des études épidémiologiques révèlent une corrélation inverse entre le risque de développer un cancer du côlon et un régime alimentaire riche en ail. De nombreux travaux scientifiques rapportent l'activité anti-cancéreuse des polysulfures de diallyle (PSDA) dérivés de l'ail dans divers types de cancer in vitro et in vivo. Le mécanisme d'action le mieux connu repose sur l'induction de l'arrêt mitotique suivi de l'apoptose. La tubuline est identifiée comme nouvelle cible thérapeutique des PSDA. La tubuline est fondamental dans la progression de l'autophagie, source nutritionnelle essentielle pour le développement du cancer au stade avancé, et l'activation de l'autophagie joue un rôle de chimiorésistance dans le traitement du cancer du côlon. L'hypothèse de ce projet est que les PSDA dérivés de l'ail interagissent avec la tubuline pour altérer l'organisation du réseau microtubulaire responsable de l'inhibition de la prolifération cellulaire et de la modulation de l'autophagie dans le cancer du côlon. Dans un premier temps, nous avons analysé l'impact du TTSDA/TTSDB sur le réseau microtubulaire. Nous avons montré que le TTSDA/TTSDB interagissait avec la tubuline par spectrométrie en masse. Nous avons montré que l'organisation microtubulaire est altérée dans les trois lignées cellulaires : HT-29 (mutées BRAF), SW480 (mutées KRAS) et SW620 (mutées KRAS, métastatiques), plus sensibles au TTSDB que le TTSDA. Dans un deuxième temps, nous avons étudié le rôle anticancéreux du TTSDB dans le cancer du côlon. Nous avons montré que le TTSDB induisait un arrêt mitotique suivi de la mort cellulaire dans toutes lignées confondues. Son activité antiproliférative est validée dans un système de culture 3D et in vivo. Nous avons aussi montré que l'effet du TTSDB est comparable aux agents altérant les microtubules. Dans un troisième temps, nous avons évalué l'impact du TTSDB dans l'autophagie. L'inhibition de l'autophagie est accompagnée par l'accumulation de la protéine p62, qui joue un rôle de survie dans les cellules HT-29 uniquement. Ensemble, nous avons identifié l'autophagie comme mécanisme de survie lors de l'arrêt mitotique prolongé en fonction du type cellulaire. Cette étude permettra d'envisager un ciblage thérapeutique selon le profil génétique du cancer du côlon / Colorectal cancer is a major cause of morbidity and mortality worldwide. Epidemiological studies reveal an inverse correlation between the risk of developing colon cancer and a garlic-rich diet. Many scientific studies reported the anti-cancer activity of diallyl polysulfides (DAPS) derived from garlic in various types of cancer in vitro and in vivo. The best-known mechanism of action is the induction of mitotic arrest followed by apoptosis. Here tubulin is identified as a new therapeutic target for DAPS. Tubulin is fundamental in the progression of autophagy, an essential energy source for the development of advanced cancer, and autophagy activation plays a role of chemoresistance against the treatment of colon cancer.The hypothesis of this project is that garlic-derived DAPS interact with tubulin to alter the microtubule network organization responsible for the inhibition of cell proliferation and modulation of autophagy in colon cancer.First, we analyzed the impact of DATTS/DBTTS on the microtubular network. We have shown that DATTS/DBTTS interacts with tubulin by mass spectrometry. We have shown that the microtubule organization is altered in the three cell lines: HT-29 (BRAF mutated), SW480 (KRAS mutated) and SW620 (metastatic, KRAS mutated), which were more sensitive to DBTTS than DATTS. In a second step, we studied the anticancer activity of DBTTS in colon cancer. We showed that DBTTS induced mitotic arrest followed by cell death in all cell lines. Its anti-proliferative activity is validated in a 3D culture system and in vivo. We have also shown that the effect of DBTTS is comparable to microtubule altering agents. In a third step, we evaluated the impact of DBTTS in autophagy. Inhibition of autophagy is accompanied by accumulation of the p62 protein, which plays a survival role in HT-29 cells only.Altogether, we identified here autophagy as a survival mechanism during prolonged mitotic arrest depending the cell type. This study will allow us to consider targeted therapy according to the genetic profile of colon cancer
8

Electrochemical sulfide removal from wastewater: microbial interactions and process development

Paritam Kumar Dutta Unknown Date (has links)
Sulfide is commonly present in domestic and industrial wastewater. As it is toxic, corrosive and odorous, it often needs to be removed prior to discharge to sewer or in the sewer system itself, and certainly before discharging into the environment. The scope of this thesis was to develop and demonstrate a novel, low energy electrochemical technique for the removal and recovery of sulfide from wastewater. In addition, this study aimed to evaluate the influence of inorganic sulfur species on organics oxidation in bioelectrochemical systems. The results demonstrate that sulfide oxidation to elemental sulfur can generate net electrical power in an electrochemical system. However, while the process effectively removed the sulfide from the wastewater, the elemental sulfur was deposited on the electrodes and deactivated them over time. Sulfide removal rate decreased from its initial value 80±2% to 62±4% after 8 days of operation when a lab scale reactor operated continuously in fuel cell mode (external resistance 10 Ω) with a loading rate of 0.43 ± 0.04 kg-S m-3 d-1 of total anodic compartment (TAC). The removal rate was constant for the following 50 days of operation and significantly decreased to about 10% after 90 days. On average, the power production was 5±1 W m-3 TAC with the coulombic efficiency of 88±5% but the maximum power production capacity of the reactor was 78 W m-3 TAC using potassium ferricyanide cathode. However, the deposited sulfur could be effectively removed and recovered as a concentrated sulfide/polysulfide solution by reversing the polarity of the electrode with low electrical energy input. The results also demonstrate that microbial consortia that developed due to the organic electron donors in the wastewater, negatively affected the performance of the sulfide removal process. The microorganisms were using the electrodeposited sulfur as a preferred electron acceptor over soluble sulfate and the electrode. This process was converting sulfur back to sulfide irrespective of the electrochemical conditions. In batch systems, the sulfide produced in this way could be re-oxidized at the anode and therefore the obtained coulombic efficiency was 97±2% for acetate oxidation. However, in continuous systems, depending on the operational conditions and wastewater characteristics, the sulfide could leave the system in the effluent. By applying cell polarity reversals at a sufficiently high frequency, it was possible to avoid biofilm formation and hence the re-generation of sulfide from the deposited sulfur. To confirm the effectiveness of the electrochemical sulfide removal in real wastewater, the process was demonstrated on the effluent of an anaerobic digester of a paper mill. Sulfide was removed from 44±7 to 8±2 mg-S L-1 at a removal rate of 0.845±0.133 kg-S m-3 TAC d-1 and a recovery rate of 75±4% with the voltage input of 0.52 to 1.3 V. Periodic switching in every 24 hours intervals between anode and cathode was an effective technique to maintain a good sulfide removal performance and avoid unwanted biofilm formation at the anode. Sulfide present in the wastewater could therefore be effectively removed from the liquid phase and harvested as elemental sulfur deposit on the electrode.
9

Herstellung von Metallkomplexen mit schwefelreichen Liganden

Chrzanowski, Lars Stefan von. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2005--Berlin.
10

Modifying kraft pulping to produce a softwood pulp requiring less energy in tissue paper production

Rahman, Hafizur January 2018 (has links)
Modification of softwood kraft pulp by the addition of either polysulfide (PS) or sodium borohydride (NaBH4) has been shown to increase the pulp yield due to a higher retention of glucomannan.  The pulps with higher yield gave a paper with higher tensile index than reference pulp, especially at lower degrees of refining. The higher yield pulps also showed a greater porosity of the fibre wall, indicating an increase in the swelling potential of the fibres. This can lead to increased fibre flexibility and increased joint strength between the fibres and to the higher handsheet tensile index. However, the swelling increase associated with the higher hemicellulose content could also make dewatering more challenging because of the higher water retention of the pulp. The results of this study show however that the positive influence of the increase in yield (fewer fibres and a more open sheet structure) dominates over the negative influence of the higher hemicellulose content on the dewatering properties, especially at lower refining energy levels. Studies simulating full-scale tissue machine dewatering conditions showed that pulps with a higher yield and a higher hemicellulose content had a higher tensile index at the same dryness. Moreover, the same dryness level was achieved in a shorter dwell-time. A given tensile index was also achieved with less refining energy. Increasing the yield and hemicellulose content by the addition of either an oxidizing or a reducing agent in the softwood kraft pulping process thus has a potential for giving high quality fibres for tissue paper production with less refining energy and lower drying energy costs. / <p>Vid tidpunkten för framläggningen av avhandlingen var följande delarbeten opublicerade: delarbete 2 inskickat.</p><p>At the time of the defence the following papers were unpublished: paper 2 submitted.</p>

Page generated in 0.0605 seconds