• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 30
  • 17
  • 12
  • 10
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis for reaction mechanism of cathode materials for lithium-sulfur batteries / リチウム硫黄電池における正極材料の反応機構の解析

Xiao, Yao 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第23286号 / 人博第1001号 / 新制||人||236(附属図書館) / 2020||人博||1001(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 田部 勢津久, 教授 高木 紀明 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
12

Development of Novel Cathodes for High Energy Density Lithium Batteries

Bhargav, Amruth 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lithium based batteries have become ubiquitous with our everyday life. They have propelled a generation of smart personal electronics and electric transport. Their use is now percolating to various fields as a source of energy to facilitate the operation of devices from nanoscale to mega scale. This need for a portable energy source has led to tremendous scientific interest in this field to develop electrochemical devices like batteries with higher capacities, longer cycle life and increased safety at a low cost. To this end, the research presented in this thesis focuses on two emerging and promising technologies called lithium-oxygen (Li-O₂) and lithium-sulfur (Li-S) batteries. These batteries can offer an order of magnitude higher capacities through cheap, environmentally safe and abundant elements, namely oxygen and sulfur. The first work introduces the concept of closed system lithium-oxygen batteries wherein the cell contains the discharge product of Li-O₂ batteries namely, lithium peroxide (Li₂O₂) as the starting active material. The reversibility of this system is analyzed along with its rate performance. The possible use of such a cathode in a full cell is explored. Also, this concept is used to verify if all the lithium can be extracted from the cathode in the first charge. In the following work, lithium peroxide is chemically synthesized and deposited in a carbon nanofiber matrix. This forms a free-standing cathode that shows high reversibility. It can be cycled up to 20 times, and while using capacity control protocol, a cycle life of 50 is obtained. The cause of cell degradation and failure is also analyzed. In the work on full cell lithium-sulfur system, a novel electrolyte is developed that can support reversible lithium insertion and extraction from a graphite anode. A method to deposit solid lithium polysulde is developed for the cathode. Coupling a lithiated graphite anode with the cathode using the new electrolyte yields a full cell whose performance is characterized and its post-mortem analysis yields information on the cell failure mechanism. Although still in their developmental stages, Li-O₂ and Li-S batteries hold great promise to be the next generation of lithium batteries, and these studies make a fundamental contribution towards novel cathode and cell architecture for these batteries.
13

Studies of Rechargeable Lithium-Sulfur Batteries

Cui, Yi 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The studies of rechargeable lithium-sulfur (Li-S) batteries are included in this thesis. In the first part of this thesis, a linear sweep voltammetry method to study polysulfide transport through separators is presented. Shuttle of polysulfide from the sulfur cathode to lithium metal anode in rechargeable Li-S batteries is a critical issue hindering cycling efficiency and life. Several approaches have been developed to minimize it including polysulfide-blocking separators; there is a need for measuring polysulfide transport through separators. We have developed a linear sweep voltammetry method to measure the anodic (oxidization) current of polysulfides crossed separators, which can be used as a quantitative measurement of the polysulfide transport through separators. The electrochemical oxidation of polysulfide is diffusion-controlled. The electrical charge in Coulombs produced by the oxidation of polysulfide is linearly related to the concentration of polysulfide within a certain range (≤ 0.5 M). Separators with a high porosity (large pore size) show high anodic currents, resulting in fast capacity degradation and low Coulombic efficiencies in Li-S cells. These results demonstrate this method can be used to correlate the polysulfide transport through separators with the separator structure and battery performance, therefore provide guidance for developing new separators for Li-S batteries. The second part includes a study on improving cycling performance of Li/polysulfide batteries by applying a functional polymer on carbon current collector. Significant capacity decay over cycling in Li-S batteries is a major impediment for their practical applications. Polysulfides Li2Sx (3 < x ≤ 8) formed in the cycling are soluble in liquid electrolyte, which is the main reason for capacity loss and cycling instability. Functional polymers can tune the structure and property of sulfur electrodes, hold polysulfides, and improve cycle life. We have examined a polyvinylpyrrolidone-modified carbon paper (CP-PVP) current collector in Li/polysulfide cells. PVP is soluble in the electrolyte solvent, but shows strong affinity with lithium polysulfides. The retention of polysulfides in the CP-PVP current collector is improved by ~50%, which is measured by a linear sweep voltammetry method. Without LiNO3 additive in the electrolyte, the CP-PVP current collector with 50 ug of PVP can significantly improve cycling stability with a capacity retention of > 90% over 50 cycles at C/10 rate. With LiNO3 additive in the electrolyte, the cell shows a reversible capacity of > 1000 mAh g ⁻¹ and a capacity retention of > 80% over 100 cycles at C/5 rate. The third part of this thesis is about a study on a binder-free sulfur/carbon composite electrode prepared by a sulfur sublimation method for Li-S batteries. Sulfur nanoparticles fill large pores in a carbon paper substrate and primarily has a monoclinic crystal structure. The composite electrode shows a long cycle life of over 200 cycles with a good rate performance in Li-S batteries.
14

Advanced Cathodes for High Energy Density Lithium Sulfur Battery

Bhoyate, Sanket 12 1900 (has links)
A systematic development of 2D alloy catalyst with synergistic performance of high lithium polysulfide (LiPS) binding energy and efficient Li+ ion/electron conduction is presented. The first section of work found that Li+ ions can flow through the percolated ion transport pathway in polycrystalline MoS2, while Na+ and K+ ions can easily flow through the percolated 1D ion channel near the grain boundaries. An unusually high ionic conductivity of extrinsic Li+, Na+, and K+ ions in 2D MoS2 film exceeding 1 S/cm was measured that is more than two orders of magnitude higher than those of conventional solid ionic materials, including 2D ionic materials. The second section of this dissertation focus on catalyzing the transformation of LiPSs to prevent the shuttle effect during the battery cycling by synthesizing 2H (semiconducting) – 1T (metallic) mixed phase 2D Mo0.5W0.5S2 alloy on CNF paper, using two step sputtering and sulfurization method. The lithium sulfur (Li-S) battery cell assembled with the 2D Mo0.5W0.5S2/CNF/S cathode shows a high specific capacity of 1228 mAh g-1 at 0.1C and much higher cyclic stability over 4 times as compared to the pristine cathodes. The high LiPSs binding energy of catalyst efficiently prevents the shuttling effect and corrosion of Li anode after long term stability test for over 400 cycles. The defect engineered MoWS catalyst on CNF showed significantly enhanced polysulfide transformation resulting in specific capacity of 1586 mAh g-1 at 0.05C for the full cell Li-S battery and much higher cyclic stability over 1000 cycles. Stacked layers of D-MoWS-CNF-S cathodes can result in an increased sulfur loading up to 10 mg cm-2 with highest achievable areal capacity of 13.5 mAh/cm2. The efficient sulfur utilization and reduced negative-to-positive capacity (N/P) ratio by D-MoWS catalyst significantly increased the gravimetric energy density to the highest reported value of 1090 Wh kg-1 w.r.t the total weight of anode and cathode.
15

Tailoring Pore Size and Polarity for Liquid Phase Adsorption by Porous Carbons

Hippauf, Felix 29 May 2017 (has links) (PDF)
Adsorption is a versatile purification technique to selectively separate different peptide fractions from a mixture using mild operation conditions. Porous carbons are ideally suited to separate ACE-inhibiting dipeptides by combining tailored size exclusion and polarity selectivity. The desired peptide fraction is mostly hydrophobic and very small and should adsorb inside hydrophobic micropores. The second topic of this thesis is linked to energy storage. The lithium-sulfur battery is a promising alternative to common lithium-ion batteries with theoretical capacities of up to 1672 mAh g−1 sulfur. The second aim of this thesis is to conduct an in-depth investigation of polysulfides interacting with selected carbon materials in a simplified battery electrolyte environment. The focus of this study is laid on the impact of surface polarity and pore size distribution of the carbon to develop a quantitative correlation between polysulfide retention and porosity metrics. Both, the enrichment of ACE-inhibitors and the retention of polysulfides rely on liquid phase adsorption in porous materials, linking the above mentioned topics. This thesis not only aims to develop an enrichment process or to find a superior battery cathode but also strives to explore structure-property relationships that are universally valid. Understanding the complex interplay of pore size and polarity leading to selective interactions between pore wall and the adsorbed species is given a high priority.
16

Interfacing spectrophotometry to process liquors applications to kraft pulping

Yang, Xiaotian January 2002 (has links)
This thesis summarizes the outcome of work performed withthe objective to contribute to the knowledge and development ofthe kraft cooking process using spectrophotometricinterfaces. In kraft cooking, it is desirable to maximize the removal oflignin in the cook without loss of pulp strength. Theselectivity can be improved by exchanging some of the hydrogensulfide ion in the white liquor for polysulfides. Paper Ipresents a spectrophotometric method for in-line monitoring ofthe electrochemical production of polysulfide using anATR-probe for the UV-Vis range. A linear relation existsbetween the ATR-probe response and the concentration ofabsorbing species. Thus the process can be followed by simplemonitoring of a few wavelengths. A spectrophotometric monitoring system using a durableNafion ionomer membrane interface for continuous on-linemeasurement of sulfide and dissolved lignin during kraftcooking has previously been developed by our group. In paperII, the permeation of low molecular weight anions from liquorshaving high ionic strengths through a membrane in Na+ form hasbeen studied. A general relation between penetration and ionsize approximated by molecular weight has been established. Thepenetration of different anions can be explained as a diffusionthrough the winding membrane channels. Further the differentanions transport independently without being interfered by thesample matrix. In light of this validation, we applied the membraneinterface to the determination of anthraquinone-2-sulfonate(AQ-S) in alkaline pulping liquor. In paper III, a simple andrapid spectrophotometric method was developed and implementedon real samples. Interferences from other compounds penetratingthe membrane were minimized by reduction of the penetrated AQ-Sand measurement at 520 nm. This method is quick and can be usedon-line. Further, we extended the method to determination ofanthraquinone (AQ) in pulping liquor (paper IV). Although AQ isregarded as insoluble, it was found that the apparentsolubility of AQ in alkaline solutions increases considerablyin the presence of lignin, reaching 0.14 g/L at 90 oC. Thismakes the calibration of AQ possible. Time-resolvedmeasurements of dissolved AQ in 3 kraft-AQ pulping processeswere performed. The results show that the membrane has great potential aspart of a selective interface in applications where theconcentrations of small anions are to be monitored in mediawith high ionic strength. Keywords: Kraft cooking, On-line, Sulfide, Lignin,Polysulfide excess sulfur, Anthraquinone-2-Sulfonate (AQ-S),Anthraquinone (AQ), Nafion Membrane, UV-Vis, ATR-probe,Spectrophotometric.
17

Interfacing spectrophotometry to process liquors applications to kraft pulping

Yang, Xiaotian January 2002 (has links)
<p>This thesis summarizes the outcome of work performed withthe objective to contribute to the knowledge and development ofthe kraft cooking process using spectrophotometricinterfaces.</p><p>In kraft cooking, it is desirable to maximize the removal oflignin in the cook without loss of pulp strength. Theselectivity can be improved by exchanging some of the hydrogensulfide ion in the white liquor for polysulfides. Paper Ipresents a spectrophotometric method for in-line monitoring ofthe electrochemical production of polysulfide using anATR-probe for the UV-Vis range. A linear relation existsbetween the ATR-probe response and the concentration ofabsorbing species. Thus the process can be followed by simplemonitoring of a few wavelengths.</p><p>A spectrophotometric monitoring system using a durableNafion ionomer membrane interface for continuous on-linemeasurement of sulfide and dissolved lignin during kraftcooking has previously been developed by our group. In paperII, the permeation of low molecular weight anions from liquorshaving high ionic strengths through a membrane in Na+ form hasbeen studied. A general relation between penetration and ionsize approximated by molecular weight has been established. Thepenetration of different anions can be explained as a diffusionthrough the winding membrane channels. Further the differentanions transport independently without being interfered by thesample matrix.</p><p>In light of this validation, we applied the membraneinterface to the determination of anthraquinone-2-sulfonate(AQ-S) in alkaline pulping liquor. In paper III, a simple andrapid spectrophotometric method was developed and implementedon real samples. Interferences from other compounds penetratingthe membrane were minimized by reduction of the penetrated AQ-Sand measurement at 520 nm. This method is quick and can be usedon-line. Further, we extended the method to determination ofanthraquinone (AQ) in pulping liquor (paper IV). Although AQ isregarded as insoluble, it was found that the apparentsolubility of AQ in alkaline solutions increases considerablyin the presence of lignin, reaching 0.14 g/L at 90 oC. Thismakes the calibration of AQ possible. Time-resolvedmeasurements of dissolved AQ in 3 kraft-AQ pulping processeswere performed.</p><p>The results show that the membrane has great potential aspart of a selective interface in applications where theconcentrations of small anions are to be monitored in mediawith high ionic strength.</p><p>Keywords: Kraft cooking, On-line, Sulfide, Lignin,Polysulfide excess sulfur, Anthraquinone-2-Sulfonate (AQ-S),Anthraquinone (AQ), Nafion Membrane, UV-Vis, ATR-probe,Spectrophotometric.</p>
18

Assessing the Microbial Consequences of Remediation: Surrogate Microbial Screening and Native Metabolic Signatures in Tc(VII) Contaminated Sediments

Bailey, Kathryn Lafaye 01 January 2012 (has links)
The chemical and physical processes controlling contaminant fate and transport in the vadose zone limit the options for application of many remedial technologies. Foam delivery technology (FDT) has been developed as a potential solution to overcome these limitations for remediating subsurface and deep vadose zone environments using reactive amendments. Although there are many advantages to utilizing FDT for treatment in the deep vadose zone, little information is available on how the addition of these surfactants and remedial amendments affect the indigenous microbial communities in the deep vadose zone as well as the impact of biological transformations of surfactant-based foams on remediation efforts. The purpose of this study was to develop a rapid method for assessment of microbial communities in contaminated subsurface environments. This research was divided into two phases: (1) assess the toxicity of proposed FDT components on a single bacterial species, Shewanella oneidensis MR-1; and (2) determine the effects of these components on a microbial community from the vadose zone. In Phase I, S. oneidensis MR-1 was exposed to proposed FDT components to assess potential growth inhibition or stimulation caused by these chemicals. S. oneidensis MR-1 cultures were exposed to the surfactants sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), cocamidopropyl betaine (CAPB), and NINOL 40-CO, and the remedial amendment, calcium polysulfide (CPS). Results from this phase revealed that the relative acute toxicity order for these compounds was SDS>>CPS>>NINOL40-CO>SLES≥CAPB. High concentrations of SDS were toxic to the growth of S. oneidensis MR-1 but low concentrations were stimulatory. This benchtop system provided a capability to assess adverse microbial-remediation responses and contributed to the development of in situ remedial chemistries before they are deployed in the field. For Phase II, sediments from the BC Cribs and Trenches (BCCT) area of the Hanford Site, WA, were characterized before and after exposure to potential FDT components. First, the phylogenetic and metabolic diversity of sediment from the BCCT was assessed by sequencing the microbial community and measuring the metabolic activity. The sediment was also incubated with various concentrations of SDS, CAPB, and CPS. Phylogenetic analysis detected phylotypes from the Alpha-, Beta-, Delta-, and Gammaproteobacteria, and Actinobacteria. Unlike the S. oneidensis MR-1 studies conducted in Phase I, the surfactants and CPS stimulated the metabolic activity of the native microbial communities. The observed stimulation could be caused by sorption of the chemicals to the sediment particles, or utilization of the surfactants by the microbial communities. These findings emphasize the importance of monitoring microbial activity at remediation sites in order to determine short and long term efficacy of the treatment, compliance with regulatory mandates, and act as an early warning indicator of unintended changes to the subsurface.
19

Réticulation de polymères polysulfure par réaction thiol-Michaël contrôlée / Polysulfide polymers Crosslinking by a controlled thiol-Michaël reaction

Froidevaux, Vincent 13 November 2014 (has links)
Les mastics polysulfures sont très utilisés dans l'aéronautique, ceci grâce à leur bonne tenue au froid et leur résistance au carburant. La plupart d'entre eux sont des bicomposants (un polymère polysulfure et un durcisseur avec éventuellement un catalyseur dans l'un des composants). Les formulations de mastic, réticulé au MnO2, permettent d'avoir des temps de gel de 2 jours, avec une réticulation complète au bout de 70 jours. Cependant, ce temps de gel long induit un temps de réticulation trop long. Ainsi, l'objectif de cette thèse était de créer un nouveau type de mastic, qui serait idéalement monocomposant avec un temps de gel toujours long, voir infini et qui réagirait sur demande après stimulus avec un temps de réticulation court. C'est ce qui est appelé le concept SCOD (sealant cure on demand). Pour cela, il faut bloquer un des trois réactifs, et que celui-ci soit déblocable sur demande à l'aide d'un stimulus simple industriellement tel que la température (cible entre 60-80°C). Le concept de blocage choisi est la réaction de Diels-Alder sur des composés accepteurs de Michaël. En effet, cette réaction est réversible et la cycloréversion permet la déprotection de la double liaison réactive. Après déblocage, l'accepteur de Michaël peut réagir avec le polysulfure. Une première étude, sur les accepteurs de Michaël, a permis de déterminer que les fonctions maléimides, en présence de DABCO, donnent les meilleures cinétiques pour la réaction avec les thiols du polysulfure. Une deuxième étude, sur la réaction de Diels-Alder et rétroDiels-Alder, a prouvé la faisabilité du projet et a permis de sélectionner les dérivés du furane comme agents bloquants pour répondre à la fourchette de température imposée. Ensuite, des durcisseurs polymaléimides aliphatiques ont été synthétisés à l'aide des Jeffamines® d'Huntsman et bloqués avec le furfuryl acétate, afin d'être utilisés pour la création de matériaux suivant le concept SCOD. Le temps de gel obtenu avec les durcisseurs bloqués, était de 7 jours et un matériau était obtenu après 17 heures de chauffe. Le concept SCOD a donc été démontré. Cette étude a, ensuite, été extrapolée au Centre de Recherche d'Hutchinson en formulation modèle sur de plus grandes quantités. Aussi, les propriétés des mastics obtenus ont été déterminées et répondaient à une majorité des critères du cahier des charges.. Le déblocage a été amélioré après ajout d'un thiol tétrafonctionnel (PETMA, co-agent) et l'utilisation d'un autre catalyseur (DBU), Le temps de déblocage étant encore trop long et le bloquant, relargué dans la formulation, forme des porosités dans le mastic et dégrade, de fait, les propriétés de celui-ci. Ainsi une dernière partie d'amélioration a été effectuée. En effet, dans celle-ci, une nouvelle génération de durcisseur, cette fois-ci aromatique, et d'agent bloquant, jouant le rôle de plastifiant non volatil, a été créée et testée en laboratoire. Ceux-ci ont présenté de très bons résultats préliminaires avec des temps de déprotection plus courts et des bloquants moins volatils à la température de déblocage comparé au furfuryl acétate. L'extrapolation doit se poursuivre fin 2014-début 2015 sur ces nouveaux durcisseurs en formulation mastic modèle. / Polysulfide sealants are widely used in aviation because of their good resistance to low temperature and to fuels. Most of them are bycomponent (a polysulfide polymer and a crosslinking agent and, eventually a curing catalyst in one of them). These sealant formulations, crosslinked with MnO2, have a gel time of two days, with a full curing after 70 days. However, because of this short gel time, the curing time is too long. Thus, the objective of this thesis was to create a new type of sealant, monocomponent, with still a long gel time, ideally infinite, that could react on demand after stimulus, in order to have a short curing time. This concept is called SCOD concept (sealant cure on demand). These criteria require to block one of the three products, and this one should be unblocked on demand using an ease stimulus such as temperature. The system chosen as blocking principle is the Diels-Alder reaction of a Michaël acceptor. Indeed, this reaction is reversible and the cycloreversion allows to unprotect the reactive double bond. After the unblocking reaction, the Michaël acceptor may react with the polysulfide. A primary study, on Michael acceptors, allowed to determine that maleimide function, in the presence of triethylamine, gives the best kinetics for reaction with polysulfide's thiol. A second study, this time on the Diels-Alder and retroDiels-Alder reaction, proved the feasibility of the project and allowed to select furan derivatives as blocking agents. Then, aliphatic polymaleimides hardeners were synthesized using Huntsman's Jeffamine and were blocked with the acetate furfuryl, so as to be used for creating SCOD materials. The gel time obtained with blocked hardener was 7 days at room temperature and after heating for 17 hours, a material was obtained; the SCOD concept has been demonstrated. The study was, then, extrapolated to Hutchinson's research and development department on bigger quantities to do some basic formulation. In addition, the sealant's characteristics have been determined and have shown very interesting results. Unblocking time was improved after adding tetrafunctional thiols (co-agent) and one another catalyst (DBU). The unblocking time was too long and the blocking agent, once released into the formulation, formed porosities into the sealant and, because of it, damaged the properties of the sealant. A latter part was done to improve the SCOD concept. Two new generations of hardener, aromatic this time, and blocking agent, acting as a non-volatile plasticizer, were created and tested in laboratory. These have presented very good preliminary results. Indeed, the unblocking time is much shorter and the unblocking agent is less volatile at high temperature compare to acetate furfuryl. The scaling up to pilot level is under way (end of 2014).
20

Pretreatment and Enzymatic Treatment of Spruce : A functional designed wood components separation for a future biorefinery

Wang, Yan January 2014 (has links)
The three main components of wood, namely, cellulose, hemicellulose, and lignin, can be used in various areas. However, since lignin covalently crosslinks with wood polysaccharides creating networks that is an obstacle for extraction, direct extraction of different wood components in high yield is not an easy matter. One potential approach to overcome such obstacles is to treat the wood with specific enzymes that degrade the networks by specific catalysis. However, the structure of wood is so compact that the penetration of the wood fibers by large enzyme molecules is hindered. Thus, the pretreatment of wood prior to the application of enzymes is necessary, for “opening” the structure. One pretreatment method that was performed in this thesis is based on kraft pulping, which is a well-established and industrialized technique. For untreated wood, the wood fibers cannot be attacked by the enzymes. A relatively mild pretreatment was sufficient for wood polysaccharides hydrolyzed by a culture filtrate. A methanol-alkali mixture extraction was subsequently applied to the samples that were pretreated with two types of hemicellulases, Gamanase and Pulpzyme HC, respectively. The extraction yield increased after enzymatic treatment, and the polymers that were extracted from monocomponent enzyme-treated wood had a higher degree of polymerization. Experiments with in vitro prepared lignin polysaccharide networks suggested that the increased extraction was due to the enzymatic untying. However, the relatively large loss of hemicellulose, particularly including (galacto)glucomannan (GGM), represents a problem with this technique. To improve the carbohydrate yield, sodium borohydride (NaBH4), polysulfide and anthraquinone were used, which increased the yields from 76.6% to 89.6%, 81.3% and 80.0%, respectively, after extended impregnation (EI). The additives also increased the extraction yield from approximately 9 to 12% w/w wood. Gamanase treatment prior to the extraction increased the extraction yield to 14% w/w wood. Sodium dithionite (Na2S2O4) is an alternative reducing agent for the preservation of hemicelluloses because it is less expensive than metal hydrides and only contains sodium and sulfur, which will not introduce new elements to the recovery system. Moreover, Na2S2O4has the potential to be generated from black liquor. Na2S2O4 has some preservation effect on hemicelluloses, and the presence of Na2S2O4 also contributed to delignification. The extraction yield increased to approximately 15% w/w wood. Furthermore, Na2S2O4 has been applied in the kraft pulping process of spruce. The yield and viscosity increased, while the Klason lignin content and kappa number decreased, which represents a beneficial characteristic for kraft pulp. The brightness and tensile strength of the resulting sheets also improved. However, the direct addition of Na2S2O4 to white liquor led to greater reject content. This problem was solved by pre-impregnation with Na2S2O4 and/or mild steam explosion (STEX) prior to the kraft pulping process. Following Na2S2O4 pre-impregnation and mild STEX, the obtained kraft pulp had substantially better properties compared with the properties exhibited after direct addition of Na2S2O4 to the white liquor. The wood structure opening efficiency of mild STEX alone was also tested. The accessibility of the wood structure to enzymes was obtained even at very modest STEX conditions, according to a reducing sugar analysis, and was not observed in untreated wood chips, which were used as a reference. The mechanical effect of STEX appears to be of great importance at lower temperatures, and both chemical and mechanical effects occur at higher STEX temperatures. / <p>QC 20140903</p>

Page generated in 0.0641 seconds