• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and evaluation of dispersing agents for carbon black filled natural rubber compounds

Gunewardena, J. Anoma G. S. G. January 1999 (has links)
Various additions are used in rubber compounds to accelerate mixing with particulate fillers and to improve behaviour in subsequent processing operations. Cationic surfactants of general structure [RNH2(CH2)3NH3]2+ 2[R'COO] can be used in rubber processing as multifunctional additives (MFA) which act as processing aids, accelerators and mould releasing agents. However, with all these beneficial properties an adverse effect of decreased scorch time was observed when N–tallow–1,3 diaminopropane dioleate (EN444) was used in the filled natural rubber compound.
2

Emulsion Polymerization Using Switchable Surfactants

FOWLER, CANDACE IRENE 26 September 2011 (has links)
The work presented herein focuses on expanding the use of CO2-triggered switchable surfactants in emulsion polymerization of hydrophobic and hydrophilic monomers. Bicarbonate salts of the following compounds were employed as surfactants in the emulsion polymerization of styrene, methyl methacrylate (MMA) and/or butyl methacrylate (BMA): N’-hexadecyl-N,N-dimethylacetamidine (1a), N’-dodecyl N,N-dimethylacetamidine (2a) and N’-(4-decylphenyl)-N,N-dimethylacetamidine (3a). A systematic study of the effects of surfactant and initiator concentrations and solids content on the resulting particle size and ζ-potential was carried out, showing that a wide range of particle sizes (40 – 470 nm) can be obtained. It was found that as the basicity of the surfactant decreased, the particle size generated from emulsion polymerization increased. Destabilization of these latexes did not require the addition of salts and was carried out using only non-acidic gases and heat. It was shown that solids content, temperature, particle size and surfactant basicity greatly affect the rate of destabilization of latexes. The area occupied by N’-dodecyl-N,N-dimethylacetamidinium acetate on PMMA particles was determined to be 104 Å2. The monomer-D2O partition coefficient of 2a was determined to be 21 for styrene and 2.2 for MMA. The monomer-D2O partition coefficient of the bicarbonate salt of 2a was determined to be 1.2 for styrene and 0.85 for MMA. An initial assessment of the use of switchable surfactants in the generation of inverse emulsions was carried out. It was determined that butylated polyethyleneimine (BPEI) can successfully stabilize inverse emulsions of cyclohexane and aqueous 2-(dimethylamino)ethyl methacrylate. Upon CO2 introduction, this emulsion separates into two distinct phases. / Thesis (Master, Chemistry) -- Queen's University, 2011-09-26 11:10:14.053
3

Controlling Conformation Of Macromolecules Using Non-Covalent Interaction And Micellization Behaviour Of Isomeric Phenyl Bearing Cationic Surfactants

De, Swati 01 1900 (has links) (PDF)
This thesis contains investigations in two different areas, described under six chapters. Chapter 1 contains a broad introduction to the area of foldamers, while Chapters 2, 3, 4, and 5 deal with various novel classes of synthetic polymers which can form folded structures in solution utilizing different non-covalent interactions. Chapter 6 deals with a distinctly different topic, where the objective was to study the effect of phenyl ring location on the micellization properties of a series of isomeric cationic surfactants. Synthetic polymers typically adopt a random coil conformation in solution, which is primarily an entropy driven process. So the generation of well-defined secondary structures in synthetic polymers requires specific intra-chain inter-segment interactions that will give adequate enthalpic contribution to overcome the entropic penalty associated with the formation of well-ordered conformations. During the past decade, various research groups have made significant effort to understand the essential design elements that could enable secondary structure formation in synthetic macromolecules through intra-chain inter-segment interactions, such as hydrogen bonding, solvophobic and solvophilic interaction, acid-base interaction, bond angle constraint, steric interaction, charge-transfer interaction, metal-ion complexation etc.1 Gellman2 first used the term “foldamer” to describe “any polymer with a strong tendency to adopt a specific compact conformation” which was more precisely defined by Moore and coworkers3 as “any oligomer that folds into a conformationally ordered state in solution, the structures of which are stabilized by a collection of non-covalent interactions between nonadjacent monomer units” and where the folded conformation is one of the various possible conformations. Several classes of foldamers have been studied during the past decade; a majority of them are well-defined oligomers that possess relatively restricted conformational degrees of freedom. Relatively fewer studies have explored conformational control in flexible high molecular weight polymers that possess greater conformational freedom.4 A few years ago, Ghosh et al. designed a polymeric system wherein charge-transfer interactions between alternatively placed electron-rich and electron-deficient aromatic units, aided by metal-ion complexation and solvophobic interactions, causes the polymer chain to adopt a specific folded conformation.5 Such charge-transfer induced folding was first studied by Iverson and co-workers6 in well-defined oligomers and was later elaborated by Zhao et al.7 to generate alternate designs to fold oligomeric systems. In all these studies, the C-T interactions served not only to assist the folding process but it also served as a valuable spectroscopic signature to study the folding process. The objectives of the present study are to develop simple synthetic strategies to generate different types of polymers that could be fold in solution using various noncovalent interactions. We have developed a simple synthetic strategy to design a new type of donor (1,5-dialkoxynaphthalene-DAN) containing polymer that carries a tertiary amine unit in the spacer segment, which could interact strongly with a suitably designed acceptor (pyromellitic diimide-PDI) bearing folding agent that carries a carboxylic acid group, as shown in Scheme 1.8 This acid-base interaction, brings the acceptor unit in a suitable position so as to form a C-T complex with the adjacent donors, resulting in the folding of the polymer chain. The folded conformation was studied using UV-vis and NMR spectroscopy and the folding propensities were rationalized using DFT studies. The highest association constant between the folding agent and the polymer was estimated to be around 1200 M-1. Scheme 1. Schematic representation of folding aided by two-point interactions with a folding agent. This value of association constant was not adequate to realize some potentially interesting properties in solid state. In an attempt to develop alternate systems, that could exhibit stronger propensity to fold, we designed a new type of cationic ionene,9 wherein electron-rich (DAN) and electron-deficient (PDI) aromatic units were included within the alkylene segments in an alternating fashion, as shown in Scheme 2.10 The charge-transfer (C-T) interaction between the donor and acceptor units in neighbouring segments of the ionene not only reinforced the transition to the collapsed nano-bundle form but also provides a useful spectroscopic handle to monitor the conformational change. The UV-visible spectra of these novel D-A ionene solutions at a fixed concentration in four different solvents, namely water, methanol, acetonitrile and DMSO, show different extents of charge-transfer interaction. The colour of the solution in water was deep-red, whereas in acetonitrile, it was light-yellow. The conformational transition could also be induced by titrating an acetonitrile solution of the ionene with increasing amounts of water causing a dramatic increase in the intensity of the charge-transfer band, which reflects the extent of collapse to the zig-zag state that brings the donor and acceptor units together. AFM studies confirmed the presence of flat pancake-like aggregates having nearly constant height of about 3-5 nm, which was in accordance with the estimated thickness of the postulated zig-zag structure. Scheme 2. Schematic depiction of folding of D-A ionene (left), AFM micrograph showing pancake-like aggregates of D-A ionenes (right-top), a line scan depicting the heights and diameters of the aggregates along with a schematic depiction of the aggregate (right-bottom). Scheme 3. Schematic representation of folding aided by interactions with a folding agent. In order to explore this concept further, we designed a two component system wherein the solvophobically-driven collapse of a DAN-containing ionene chain in a polar solvent is reinforced by intercalation with a suitably designed electron-deficient acceptor-containing external folding agent. DAN containing ionene polymer chains in polar solvent form an accordion-type zig-zag structure that brings adjacent donor units in close proximity; this provided an ideal hydrophobic pocket for intercalation of suitably designed electron-deficient acceptor molecules, the additional driving motivation for the intercalation being the formation of a C-T complex as shown in Scheme 3.11 Several acceptor-bearing molecules were prepared by the derivatization of pyromellitic dianhydride and naphthalene tetracarboxylic dianhydride with two different oligoethylene glycol monomethyl ether monoamines. UV-vis spectroscopic studies were carried out by using a 1:1 mixture of the DAN-ionenes and different acceptor molecules in water/DMSO solvent mixtures. The intensity of the charge-transfer (C-T) band was seen to increase with the water content in the solvent mixture, thereby suggesting that the intercalation is indeed aided by solvophobic effects. The naphthalene diimide (NDI) bearing acceptor molecules consistently formed significantly stronger C-T complexes when compared to the pyromellitic diimide (PDI) bearing acceptor molecules, which is a reflection of the stronger π-stacking tendency of the former. The highest association constant between the folding agent and the polymer was estimated to be around 4519 M-1, which was a substantial improvement over the earlier reported values.9 With a slight modification in the pendant group, we designed a water-soluble DAN-containing ionene, which can intercalate hydrophobic electron-deficient molecules, like TNT (2,4,6-trinitrotoluene), within the hydrophobic interstices between DAN units (as shown in Scheme 4), causing a depletion in fluorescence from the DAN units; TNT at concentration as low as 30 nM could be detected in this manner. Scheme 4. Schematic representation of folding of water soluble ionene and interactions with an electron-deficient hydrophobic moiety TNT. Scheme 5. Schematic representation of folded D-A allyl ionene. In light of the growing interest in single-chain polymeric nanoparticles, the fully collapsed D-A ionenes in water could be viewed as polymeric nanoparticles that are stitched together by reversible weak noncovalent interactions. In an attempt to transform the folded structure into a polymeric nanoparticle using covalent bonding, we designed D-A ionene that carries potentially polymerizable allyl units on the cationic head group instead of the dimethyl amine head group that was used in previous examples (as shown in Scheme 5). Preliminary studies showed that polymerization does not proceed readily; however, thiol-ene based clicking strategy enabled partial stitching of the folded segments, by the use of a suitably designed dithiol. In the last section of this thesis, we examined the effect of phenyl ring location on the micellization properties of a series of isomeric cationic surfactants, wherein the phenyl ring location was varied from head to tail region (as shown in Scheme 6).12 Thus, cationic surfactants (S1-S5) bearing a long alkyl chain that carries a 1,4phenylene unit and a trimethyl ammonium headgroup was synthesized and their solution properties were examined. Micellization behavior was studied using conductivity, ITC (Isothermal Titration Calorimetry), SANS (Small-Angle Neutron Scattering) and NMR. These present studies demonstrated that the presence of a large rigid ring near the hydrocarbon tail-end of the surfactant leads to a dramatic change in the micelle structure; the driving motivation to form micelles in such systems is greatly reduced and the micelles that are formed are relatively smaller and contain significantly fewer surfactants. NMR studies of micellar solutions of these surfactants indicate that the variation in the phenyl ring location may also help to probe the microenvironment at various depths within the micellar aggregates. Scheme 6. Structures of the various surfactant molecules carrying the 1,4-dioxyphenylene unit at different locations within hydrophobic segment (left), variation of CMC values (right). References (1) Foldamers - structure, properties, and applications, edited by Stefan Hecht and Ivan Huc, Wiley-VCH, 2007. (2) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (3) Hill, D. J.; Mio, M. J.; Prince, R. B.; Huges, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893. (4) (a) Wang, W.; Li, L. S.; Helms, G.; Zhou, H. H.; Li, A. D. Q. J. Am. Chem. Soc. 2003, 125, 1120. (b) Li, A. D. Q.; Wang, W.; Wang, L. Q. Chem. Eur. J. 2003, 9, 4594. (c) Neuteboom, E. E.; Meskers, S. C. J.; Meijer, E. W.; Janssen, R. A. J. Macromol. Chem. Phys. 2004, 205, 217. (d) Balbo Block, M. A.; Hecht, S. Macromolecules 2004, 37, 4761. (5) (a) Ghosh, S.; Ramakrishnan, S. Angew. Chem. Int. Ed. 2004, 43, 3264. (b) Ghosh, S.; Ramakrishnan, S. Angew. Chem. Int. Ed. 2005, 44, 5441. (6) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303. (7) Zhao, X.; Jia, M. X. Jiang, X. K.; Wu, L. Z.; Li, Z. T.; Chen. G. J. J. Org. Chem. 2004, 69, 270. (8) De, S.; Koley, D.; Ramakrishnan, S. Macromolecules 2010, 43, 3183. (9) Williams, S. R.; Long, T. E. Prog. Polym. Sci. 2009, 34, 762. (10) De, S.; Ramakrishnan, S. Macromolecules 2009, 42, 8599. (11) De, S.; Ramakrishnan, S. Chem. Asian J. 2011, 6, 149. (12) De, S.; Aswal, V. K.; Ramakrishnan, S. Langmuir 2010, 26, 17882. (For structural formula pl see the abstract file.
4

Estudo da interação de derivados aquo-solúveis de celulose com tensoativos catiônicos / Study of the interaction between cellulose derivatives and the cationic surfactants

Balan, Jean Cláudio 21 November 2006 (has links)
Resumo Em diversas formulações industriais, encontram-se, facilmente, vários exemplos da utilização de biopolímeros derivados de celulose em conjunto com tensoativos. Entretanto, na literatura, há divergências se ocorre realmente uma interação entre um polímero não iônico, como os derivados aquo-solúveis de celulose, em conjunto com tensoativos catiônicos. Desta forma, neste projeto de Mestrado, foram investigadas as interações entre três derivados de celulose (2-hidroxietil celulose, 2-HEC; hidroxipropil celulose, HPC e hidroximetilpropil celulose, HMPC) e três tensoativos catiônicos (cloreto de benzil-hexadecildimetilamônio, CBz; cloreto de fenil-hexadecildimetilamônio, Fenil e cloreto de 2-feniletil hexadecildimetilamônio, 2-Feniletil) obtendo-se informações sobre a estrutura dos agregados formados por este sistema através de medidas de condutividade, fluorescência no estado estacionário e viscosidade. Estas técnicas forneceram os parâmetros de concentração de agregação crítica (cac), concentração micelar crítica (cmc), grau de dissociação micelar e viscosidade das soluções. Em uma segunda etapa, foi investigada a variação da cmc do tensoativo zwitteriônico, coco amido propil betaína (CAPB), em soluções aquosas com diferentes pHs, visando futuros estudos de interação deste compostos com os biopolímeros derivados ou não de celulose. / There are many industrial formulations that are consisted of a biopolymer, such as cellulose derivatives, and surfactants. However, in literature, there are some divergences if there is a cooperative interaction between non-ionic polymers, and cationic surfactants. For this reason, in this project, the interactions between three cellulose derivatives (2- hydroxyethyl cellulose, 2-HEC, hydroxypropyl cellulose, HPC, and hydroxymethylpropyl cellulose, HPMC), and cationic surfactants (benzyl hexadecyldimethylammonium chloride, CBz, phenylhexadecyldimethylammonium chloride, Fenil, and 2-phenylethyl hexadecyl dimethylammonium chloride, 2-Feniletil) were studied through conductivity, steady-state fluorescence and viscosity measurements. The critical aggregation concentration (cac), critical micelle concentration (cmc), micelle dissociation degree, and viscosity were determined for each polymer surfactant system. In addition, the cmc of a zwitterionic surfactant, coco amido propyl betaine (CAPB), was measured in aqueous solutions of different pHs. This last experiment was performed as a preliminary essay to study the interaction of zwitterionic surfactant with several types of biopolymers.
5

Estudo da interação de derivados aquo-solúveis de celulose com tensoativos catiônicos / Study of the interaction between cellulose derivatives and the cationic surfactants

Jean Cláudio Balan 21 November 2006 (has links)
Resumo Em diversas formulações industriais, encontram-se, facilmente, vários exemplos da utilização de biopolímeros derivados de celulose em conjunto com tensoativos. Entretanto, na literatura, há divergências se ocorre realmente uma interação entre um polímero não iônico, como os derivados aquo-solúveis de celulose, em conjunto com tensoativos catiônicos. Desta forma, neste projeto de Mestrado, foram investigadas as interações entre três derivados de celulose (2-hidroxietil celulose, 2-HEC; hidroxipropil celulose, HPC e hidroximetilpropil celulose, HMPC) e três tensoativos catiônicos (cloreto de benzil-hexadecildimetilamônio, CBz; cloreto de fenil-hexadecildimetilamônio, Fenil e cloreto de 2-feniletil hexadecildimetilamônio, 2-Feniletil) obtendo-se informações sobre a estrutura dos agregados formados por este sistema através de medidas de condutividade, fluorescência no estado estacionário e viscosidade. Estas técnicas forneceram os parâmetros de concentração de agregação crítica (cac), concentração micelar crítica (cmc), grau de dissociação micelar e viscosidade das soluções. Em uma segunda etapa, foi investigada a variação da cmc do tensoativo zwitteriônico, coco amido propil betaína (CAPB), em soluções aquosas com diferentes pHs, visando futuros estudos de interação deste compostos com os biopolímeros derivados ou não de celulose. / There are many industrial formulations that are consisted of a biopolymer, such as cellulose derivatives, and surfactants. However, in literature, there are some divergences if there is a cooperative interaction between non-ionic polymers, and cationic surfactants. For this reason, in this project, the interactions between three cellulose derivatives (2- hydroxyethyl cellulose, 2-HEC, hydroxypropyl cellulose, HPC, and hydroxymethylpropyl cellulose, HPMC), and cationic surfactants (benzyl hexadecyldimethylammonium chloride, CBz, phenylhexadecyldimethylammonium chloride, Fenil, and 2-phenylethyl hexadecyl dimethylammonium chloride, 2-Feniletil) were studied through conductivity, steady-state fluorescence and viscosity measurements. The critical aggregation concentration (cac), critical micelle concentration (cmc), micelle dissociation degree, and viscosity were determined for each polymer surfactant system. In addition, the cmc of a zwitterionic surfactant, coco amido propyl betaine (CAPB), was measured in aqueous solutions of different pHs. This last experiment was performed as a preliminary essay to study the interaction of zwitterionic surfactant with several types of biopolymers.
6

Novel Multi-Headed Cationic Amphiphiles : Synthesis, Aggregation And Antibacterial Properties

Haldar, Jayanta 07 1900 (has links) (PDF)
No description available.
7

Faktory ovlivňující elektrochemickou oxidaci m-kresolu na borem dopované diamantové elektrodě / Factors influencing electrochemical oxidation of m-cresol at boron-doped diamond electrode

Procházková, Kateřina January 2016 (has links)
This study investigates electrochemical oxidation of m-cresol on boron-doped diamond electrode using direct current voltammetry (DCV), differential pulse voltametry (DPV) and cyclic voltammetry (CV). In aqueous media in pH range 2.0 - 12.0 m-cresol provides one oxidation peak. The electrode reaction is diffusion-controled. Because of electrode passivation two types of pretreatment were applied for reactivation of electrode surface., i.e. alumina polishing and anodic activation using potential of +2400 mV. Peak heights and potentials are strongly dipending on the type of pretreatment for DCV and DPV - the difference in peak potentials can reach 430 mV. Using optimal conditions for alumina polishing in 0.01 μmol·L-1 NaOH the linear dynamic range is 1.0 - 75 μmol·L-1 for DCV and 0.75 - 75 μmol·L-1 for DPV. And for anodic activation in BR buffer pH 2.0 the linear dynamic range is 0.75 - 75 μmol·L-1 for DCV and DPV. The influence of boron-doping level was investigated using a semiconductive and mettalic-type BDD film. For the latter the sensitivity in DP voltammetry is two times higer and for both types the linear dynamic range is ca 1 - 25 μmol·L-1 . The voltammetric response of m-cresol was further investigated in the presence of cationic surfactants. In the presence of CTAB and CPB the peak current...
8

Desenvolvimento de sistemas farmac?uticos emulsionados para veicula??o g?nica

Ver?ssimo, Lourena Mafra 26 February 2007 (has links)
Made available in DSpace on 2014-12-17T15:18:13Z (GMT). No. of bitstreams: 1 LourenaMV.pdf: 713655 bytes, checksum: d2c61219ecefc4633620bb6eebd45325 (MD5) Previous issue date: 2007-02-26 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Broadly speaking, the concept of gene therapy involves the transfer of a genetic material into a cell, tissue, or organ in order to cure a disease or at least improve the clinical status of a patient. Making it simple, gene therapy consists in the insertion of functional genes into cells containing defective genes by substituting, complementing or inhibiting them. The achievement of a foreigner DNA expression into a population of cells requires its transfer to the target. Therefore, it is a key issue to create systems able to transfer and protect the DNA until it reaches the target, the vectors. The disadvantages related to the use of viral vectors have encouraged efforts to develop emulsions as non-viral vectors. In fact, they are easily produced, present controllable stability and enable transfection. The aim of this work was to develop an emulsion for gene therapy and evaluate its ability to compact nucleic acids by the development of a complex with the plasmid pIRES2-EGFP. The first step was to determine the Hydrophilic Lipophilic Balance (HLB) of the Captex? 355 (oily internal phase of the emulsion) through long and short term stability assays. Based on the results, emulsions composed of Captex? 355, Tween 20? and Span 60? with 10.7 HLB were produced by three different methods: phase inversion, spontaneous emulsification and sonication. The results showed that the lowest diameter and best stability of the emulsions were achieved by the sonication method. The cationic emulsions were made by adding DOTAP to the basic emulsion. Its association with pIRES2-EGFP was evaluated by electrophoresis. Several rates of emulsion and DNA were evaluated and the results showed that 100% of the complex was formed when the rate DOTAP/DNA(nmol/?g) was 130. In conclusion, the overall results show the ability of the proposed emulsion to compact pIRES2-EGFP, which is a requirement to a successful transfection. Therefore, such formulation may be considered a promising candidate for gene therapy / Terapia g?nica, em uma ampla defini??o, ? o tratamento de doen?as baseado na transfer?ncia de material gen?tico a uma c?lula, tecido ou ?rg?o com o intuito de curar ou melhorar o estado cl?nico do paciente. Em sua forma mais simples, a terapia g?nica consiste na inser??o de genes funcionais em c?lulas com genes defeituosos objetivando substituir, complementar ou inibir esses genes causadores de doen?as. Para que o DNA ex?geno seja expresso em uma popula??o celular faz-se necess?ria a sua transfer?ncia at? o local. Assim, ? necess?rio criar ve?culos, os vetores, que transportem e protejam o DNA at? que este chegue a uma popula??o celular alvo. Os obst?culos encontrados com a utiliza??o de vetores virais t?m proporcionado o interesse no desenvolvimento de emuls?es cati?nicas como vetores n?o-virais, por serem f?ceis de produzir, apresentarem estabilidade control?vel e facilitarem a transfec??o g?nica. O objetivo deste trabalho foi desenvolver um sistema emulsionado para terapia g?nica e avaliar sua capacidade de compacta??o de ?cidos nucl?icos atrav?s da sua associa??o com o plasm?deo pIRES2-EGFP. Primeiramente o EHLc do TCM utilizado, o Captex? 355, foi determinado atrav?s de ensaios de estabilidade acelerada e a longo termo. Com base nos resultados obtidos, emuls?es de EHL 10,7 compostas de Captex? 355, Tween 20? e Span 60? foram preparadas pelos m?todos de invers?o de fases, emulsifica??o espont?nea e sonica??o e elegeu-se o melhor m?todo para o preparo das emuls?es cati?nicas. As emuls?es de menor granulometria e maior estabilidade foram obtidas atrav?s do m?todo de sonica??o. As emuls?es cati?nicas foram preparadas acrescendo-se ? emuls?o base o DOTAP e a sua associa??o com o pIRES2-EGFP foi avaliada atrav?s da t?cnica de eletroforese em gel de agarose. V?rias propor??es de emuls?o e DNA foram testadas e os resultados demonstraram que houve forma??o de 100% dos complexos quando a propor??o DOTAP/DNA(nmol/?g) foi igual a 130. Em conclus?o, o conjunto dos resultados obtidos demonstra a capacidade da emuls?o proposta neste trabalho de compactar o DNA, requisito necess?rio para uma boa transfec??o, tornando a formula??o uma forte candidata ? utiliza??o em terapia g?nica
9

Effets de tensioactifs ioniques sur les interfaces et l’agglomération d’hydrates de gaz.. / Effects of ionic surfactants on the interfaces and the gas hydrates agglomeration.

Delroisse, Henry 15 December 2017 (has links)
Lors de la production d’hydrocarbures, les conditions de pression et température dans les conduites peuvent être favorables à la formation d’hydrates de gaz (composés cristallins formés par l’association de molécules d’eau et de gaz). Leur formation peut entraîner le bouchage des conduites et mener à l’arrêt de la production, entraînant d’importantes pertes économiques. Pour remédier au risque « hydrate », les pétroliers disposent de diverses méthodes dont l’utilisation d’additifs antiagglomérants. Les antiagglomérants sont des tensioactifs capables de s’adsorber à la surface des cristaux d’hydrate et de les maintenir dispersés dans la phase hydrocarbonée, qui est généralement majoritaire. L’objectif de cette thèse est de progresser dans la compréhension des mécanismes d’action de tensioactifs ioniques pour la prévention de l’agglomération d’hydrates de gaz. Plusieurs tensioactifs cationiques ont été étudiés sur un hydrate de cyclopentane (CP) (qui se forme à pression atmosphérique) et sur un hydrate de méthane/propane (qui se forme sous pression).Pour les deux hydrates, l’effet des tensioactifs sur la morphologie des cristaux et sur leur mouillabilité a été étudié, et leur performance antiagglomérante (AA) a été évaluée en réacteur agité pour différentes conditions et compositions des systèmes. Les tensioactifs conduisant à la formation de cristaux individuels présentent les meilleures performances AA. Les observations montrent qu’il n’est pas indispensable que les tensioactifs rendent les cristaux mouillables à l’huile pour qu’ils procurent une bonne protection contre l’agglomération dans un système agité où l’huile est la phase majoritaire. Nous avons vu que la modification (par ajout de sel par exemple) de l’environnement physicochimique des molécules tensioactives peut jouer un rôle déterminant sur leurs propriétés AA. De même, la modification de la structure des molécules (nature du contre-ion, longueur des chaînes hydrocarbonées) impacte leur adsorption sur l’hydrate, la morphologie et la mouillabilité des cristaux, et par suite leur performance AA. Les principaux facteurs identifiés pour la bonne performance d’une molécule tensioactive sont sa capacité à se fixer efficacement et en quantité suffisante à la surface de l’hydrate, et à rendre les cristaux d’hydrate hydrophobes, ou dans le cas où il les rend hydrophiles d’abaisser fortement la tension interfaciale entre les phases aqueuse et huileuse de manière à réduire l’intensité des forces capillaires entre les particules. Enfin, nous avons pu établir une corrélation entre les observations faites à l’échelle microscopique et la performance AA des tensioactifs évaluée à l’échelle macroscopique. Ce travail confirme que l’hydrate de CP est globalement un bon modèle pour des évaluations simples de la performance de molécules tensioactives. L’utilisation de l’hydrate de CP présente néanmoins des limitations pour mener des études à forts sous-refroidissements et avec de grandes fractions volumiques d’eau. / Pressure and temperature conditions encountered in the pipelines of hydrocarbons production may be favorable to the formation of gas hydrates (crystalline compounds formed by the association of molecules of gas and water). Their agglomeration in pipelines may form plugs and lead to production shutdowns and cause significant economic losses. To prevent it, oil and gas companies use various methods and more particularly anti-agglomerant additives. Anti-agglomerants are surfactants that can adsorb at the hydrate crystals surface and keep them dispersed in a hydrocarbon phase. The objective of this thesis is to progress in the understanding of mechanisms of action of ionic surfactant to prevent the gas hydrates agglomeration. Several cationic surfactants were studied on a cyclopentane (CP) hydrate (formed at atmospheric pressure) and on a methane/propane hydrate (formed under pressure). For both hydrates, the effect of surfactants on the crystals morphology and on their wettability was investigated, and their anti-agglomerant (AA) performance was evaluated in an agitated reactor for systems at different conditions and compositions. The surfactants leading to the formation of individual crystals had the best AA performances. In order to have a good protection against the agglomeration, it is not necessary that the surfactants make the crystals oil wettable in a system where the oil phase is in excess. We showed that the modification (by the addition of salt for example) of the physicochemical environment of surfactant molecules plays an important role on their AA properties. Similarly, the modification of the structure of molecules (counter-ion nature, length of the hydrocarbon chains) affects their adsorption on the hydrate, the morphology and wettability of crystals and consequently their AA performance. The main factors identified for a good performance of a surfactant molecule are its capacity to be efficiently fixed and in a sufficient amount on the hydrate surface in order to make the hydrate crystals hydrophobic. In the case where it makes the hydrate hydrophilic, the surfactant has to strongly reduce the interfacial tension between the aqueous and oil phases and then reduce the intensity of capillary forces between hydrate particles. Lastly, we set a correlation between the observations done at the microscopic scale and the AA performance of surfactants evaluated at the macroscopic scale. This work confirms that the CP-hydrate is overall a good model for a simple evaluation of the surfactant molecules performance. However, the use of the CP-hydrate has some limitations to conduct studies at high subcooling and watercut.
10

Insights into the Role of Structural Modification on the Surface Molecular Interactions Probed Using Sum Frequency Generation Spectroscopy

Premadasa, Uvinduni I. 02 June 2020 (has links)
No description available.

Page generated in 0.1603 seconds