• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Characterization of Multiphase, Highly Branched Polymers

Fornof, Ann R. 28 April 2006 (has links)
Rheological modification is frequently cited as a key application for hyperbranched polymers. However, the high degree of branching in these polymers restricts entanglement and the resultant mechanical properties suffer. Longer distances between branch points may allow entanglements. Highly branched polymers, where linear units are incorporated between branch points, are synthesized with an oligomeric A2 plus a monomeric B3. Higly branched polymers differ from traditional hyperbranched polymers in that every monomeric repeating unit of a hyperbranched polymer is a potential branch point, which is not true for highly branched polymers. The oligomeric A2 plus B3 synthetic methodology was used for the synthesis of highly branched ionenes and polyurethanes. Highly branched ionenes, which have a quaternary ammonium salt in the main chain, were synthesized with a modified Menshutkin reaction. The oligomeric A2 was comprised of well-defined telechelic tertiary amine endcapped poly(tetramethylene oxide). Reduced mechanical properties were observed for highly branched polymers compared to linear counterparts. Highly branched polyurethanes were synthesized with polyether soft segments including poly(ethylene glycol), poly(tetramethylene glycol), and poly(propylene glycol). Degree of branching was determined via a novel 13C NMR spectroscopy approach, which is described herein. The classical degree of branching was supplemented with an alternative degree of branching equation, which was tailored for highly branched architectures. The melt and solution viscosities of highly branched poly(ether urethane)s were orders of magnitude lower than the linear analogs. For the first time, the presence of entanglements was confirmed for highly branched polymers. Doping the highly branched polyurethane with lithium perchlorate, a metal salt, resulted in a significantly higher melt viscosity. The ionic conductivity of the highly branched polyurethane when doped with a metal salt was orders of magnitude higher than the linear analog. Soybean oil was oxidized for synthesis of soy-based polyol monomers. Three regimes were determined, and for the first time, a correlation between hydroxyl number and a resonance from the double bonds of soybean oil in 1H NMR spectroscopy was described. The relationship was used to accurately describe oxidation of soybean oil with time, temperature, and air flow rate. Soybean oil oxidation was catalyzed, and tack-free films were formed. / Ph. D.
2

Synthesis and characterization of ammonium ionenes containing hydrogen bonding functionalities

Tamami, Mana 16 January 2013 (has links)
Ammonium ionenes are polycations that have quaternary nitrogens in their macromolecular backbone and are synthesized via step-growth polymerization technique. They offer interesting coulombic properties, and the synthetic design provides control over charge density. Non-covalent interactions including nucleobase hydrogen bonding and electrostatics were studied in ammonium ionenes. The non-covalent interactions are expected to increase the effective molecular weight of polymeric precursors and induce microphase separation due to intermolecular associations. The influence of non-covalent interactions on structure-property relationships of ammonium ionenes were studied regarding mechanical (tensile, DMA), thermal (DSC, TGA), and morphological (AFM, SAXS) properties. Hydrogen bonding interaction (10-40 kJ/mol) was introduced using DNA nucleobase pairs such as adenine and thymine. Novel adenine and thymine functionalized segmented and non-segmented ammonium ionenes were successfully synthesized using Michael addition chemistry. In non-segmented systems, we investigated the influence of spacer length on homoassociation and heteroassociation of complementary nucleobase-containing ionenes. Based on DSC analyses, complementary non-segmented ionenes made miscible blends. The Tgs of ionene blends with shorter spacer length (4 bonds between the nucleobase and secondary amine in the polymer backbone) followed the Fox equation, which indicated no intermolecular interactions. The longer alkyl spacer (9 bonds between nucleobase and secondary amine in the polymer backbone) provided efficient flexibility for the self-assembly process to occur. Thus, increasing the spacer length from 4-bonds to 9-bonds, the Tgs of the blends deviated from both Fox and Gordon-Taylor equations and demonstrated the presence of hydrogen bonding interactions. In segmented systems, we investigated the association between nucleobase-containing ionenes and their complementary guest molecules. Job's method revealed a 1:1 stoichiometry for the hydrogen-bonded complexes. These association constants for the 1:1 complexes, based on the Benesi-Hildebrand model were 94 and 130 M-1 respectively, which were in agreement with literature values for adenine and thymine nucleobase pairs (10-100 M-1). DSC thermograms confirmed no macrophase separation for 1:1 [ionene-A/T]:[guest molecule] complexes based on the disappearance of the melting peak of the guest molecule. Morphological studies including atomic force microscopy (AFM) demonstrated a reduced degree of microphase separation for the 1:1 complexes due to the disruption of adenine-adenine or thymine-thymine interactions. Poly(dimethyl siloxane)-based ammonium ionenes having various hard segment contents were synthesized. The charge density or hard segment content was tuned for appropriate application using low molecular weight monomer. The change in hard segment content had a profound effect on thermal, mechanical, rheological, and gas permeability. Microphase separation was confirmed using DSC and DMA in these systems. DMA showed that the rubbery plateau modulus extended to higher temperatures with increasing hard segment content. Tensile analysis demonstrated systematic increase in modulus of PDMS-ionenes with increasing hard segment content. Oxygen transmission rates decreased linearly as the wt% hard segment increased. / Ph. D.
3

Tailored Architectures of Ammonium Ionenes

Tamami, Mana 28 December 2009 (has links)
The synthesis and characterization of a variety of ammonium ionenes from water-soluble coatings to high-performance elastomers are discussed. Water-soluble random copolymer ionenes were synthesized using the Menshutkin reaction from 1,12-dibromododecane, N,N,Nâ ²,Nâ ²-tetramethyl-1,6-hexanediamine, and 1,12-bis(N,N-dimethylamino)dodecane. The absolute molecular weights were determined for the first time using a multiangle laser light scattering detector in aqueous size exclusion chromatography and the weight-average molecular weights of these ionenes were in the range of 17,000-20,000 g/mol. Charge density increased with increasing molar ratio of N,N,Nâ ²,Nâ ²-tetramethyl-1,6-hexanediamine and the glass transition temperature (Tg) increased from 69 °C to 90 °C as the charge density increased. Small angle x-ray scattering (SAXS) showed isotropic scattering patterns for these ionenes. A limited study on cytotoxicity of these ionenes showed no direct correlation between charge density and cell viability for human brain microvascular endothelial cell line. A series of low hard segment (HS) content, poly(propylene glycol) (PPG)-based ammonium ionenes were synthesized using a Menshutkin reaction from bromine end-capped PPG oligomers (prepared using acid-chloride reactions) and N,N,Nâ ²,Nâ ²-tetramethyl-1,6-hexanediamine. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, titration analyses, and ¹H NMR spectroscopy, confirmed the difunctionality of bromine end-capped PPG oligomers. Thermal analysis revealed Tg's of -60 °C, comparable to pure PPG, using differential scanning calorimetery (DSC), dynamic mechanical analysis (DMA) confirming microphase separation, and an onset of degradation (Td) at 240 °C. Synthesis of a series of random block copolymer ammonium ionenes with an aliphatic 1,12-dibromododecane as part of the hard segment (33 wt% HS) enhanced film formation and supported microphase separation property. The Td and Tg did not change compared to PPG-ionenes with lower HS content. DMA and tensile testing demonstrated the influence of soft segment (SS) molecular weight and hard segment (HS) content on the mechanical properties of segmented ammonium ionenes. DMA showed the onset of flow, ranging from 100-140 ºC for 1K and 2K g/mol PPG-based ionenes respectively. SAXS revealed a Bragg distance scaled with soft segment molecular weight and ranged from 6.6 to 23.4 nm for 1K to 4K g/mol PPG-based ionenes, respectively. An investigation of the salt-responsive solubility property of random block copolymer PPG-ionenes revealed a dependence on PPG molecular weight. The 1K g/mol PPG-based ionenes with a hydrophilic (HPL)/hydrophobic (HPB) value ranging from one to three showed solubility in both water and one wt% NaCl aqueous solutions. The 2K g/mol PPG-based ionenes containing HPL/HPB value of two to 15 showed cloudy dispersions in water and one wt% NaCl solutions. The 4K g/mol PPG-based ionenes possessed the salt-responsive character; 4K g/mol PPG-based ionenes with HPL/HPB values of one to 12 showed milky dispersions in water, suspended particles in one wt% NaCl solutions and film precipitation at a HPL/HPB molar ratio of 19. / Master of Science
4

Phasenübergänge und Photoreaktionen in Polyelektrolyt-Tensid-Komplexen

Frömmel, Jens 25 September 2019 (has links)
Verändern Photoreaktionen eingelagerter Substanzen die Klärtemperatur flüssigkristalliner Polyelektrolyt-Tensid-Komplexe? Komplexe (Salze) aus Polyaminen und Alkylsulfonsäuren bilden mit Wasser einen hexagonalen Flüssigkristall, der sich beim Erwärmen in eine optisch isotrope Phase umwandelt. In diese Demethylionenalkylsulfonate genannten Komplexe werden Bisthienylcyclopentene mit Alkylsulfonatseitenketten zwar ortsfest eingelagert, deren Photozyklisierung verschiebt das Gleichgewicht jedoch nur wenig von der hexagonalen zur isotropen Phase. Hingegen verläuft die Photozyklisierung der Bisthienylcyclopentene im festen Komplex teilweise deutlich langsamer als in Lösungen. / Can photoreactions of embedded substances change phase transition temperatures of polyelectrolyte surfactant complexes? Complexes made from polyamines and alkyl sulfonates form an hexagonal liquid crystal in presence of water, which is converted to optical isotropic phase by heating. These complexes resembling those of ionenes are called demethyl-ionene alkyl sulfonates. Bisthienylcyclopentenes bearing alkyl sulfonate side chains are incorporated into these complexes and keep their locations over prolonged periods of time, but the photocyclization of the chromophore only slightly shifts the equilibrium from hexagonal liquid crystal towards the optical isotropic phase. Conversely, the photocyclization of bisthienylcyclopentenes partially proceeds appreciably slower within the solid complex than in solution.
5

Imobilização de polieletrólitos do tipo ionenos em suportes sólidos / Immobilization of Polyelectrolytes of Ionene Types in Solid Supports

Munhoz, Maria Fernanda Baptista 27 March 2009 (has links)
Os polissabões são polímeros constituídos de unidades monoméricas anfifílicas. Em meio aquoso, os polissabões formam microdomínios intra- ou inter-poliméricos capazes de mimetizar muitas das propriedades de micelas, como solubilizar moléculas orgânicas, trocar contraíons e catalisar reações químicas. Os polissabões utilizados em nossos estudos foram os [n,m]-Ionenos, cuja estrutura química consiste de grupos dimetilamônio interligados por segmentos de cadeia alifática. [-(CH2)n-+N(CH3)2-(CH2)m-+N(CH3)2-]x Br- Br-[n,m]-Ioneno. Em solução aquosa, os [n,m]-Ionenos com segmentos metilênicos curtos, como por exemplo o [3,10]-Ioneno, adotam uma conformação extendida tipo \"bastão\". Por outro lado, ionenos com segmentos mais compridos, como o [3,22]-Ioneno, preferem conformações globulares, formando microdomínios através de um processo de agregação intra-polimérica dos segmentos compridos. Pelo fato de ionenos serem polímeros, podem ser imobilizados em suportes sólidos, tanto covalentemente como por adsorção eletrostática. O objetivo desse trabalho foi desenvolver novas estratégias para a eficiente imobilização covalente de ionenos sobre suportes sólidos. Os ionenos podem ser seletiva e quantitativamente desquaternizados (desmetilados), formando a poli(amina terciária) correspondente: [-(CH2)n-+N(CH3)2-(CH2)m-+N(CH3)2-]x → [-(CH2)n-N(CH3)-(CH2)m-N(CH3)-]x. Ao contrário do ioneno, a poli(amina terciária) é solúvel em meio orgânico, não apresenta forte tendência de adsorver em superfícies e possui numerosos grupos reativos (as aminas terciárias) distribuídos ao longo de toda cadeia polimérica, adequados para a imobilização da poli(amina terciária) em sílica funcionalizada com grupos cloropropil. A requaternização foi feita com vários reagentes, incluindo haletos de alquila com comprimentos de cadeia distintos (e.g., brometo de etila ou brometo de dodecila) e com 1,3-propanosultona (que fornece ionenos zwitteriônicos com grupos amôniopropano-sulfonato). A fluorescência (comprimento de onda máximo e emissão) do ácido 4-amino-1-naftaleno sulfônico (AMS) mostrou-se útil para a detecção da presença de microdomínios formados pelos ionenos imobilizados na sílica. A relação de intensidades das bandas vibracionais I/III do espectro de fluorescência do pireno dissolvido nos microdomínios permitiu inferir o grau residual de contato entre pireno e a água na superfície dos microdomínios. As propriedades \"catalíticas\" dos ionenos imobilizados foram averiguadas por meio de medidas da velocidade da hidrólise alcalina do octanoato de p-nitrofenila (NPO) e do brometo de N-dodecil-4-cianopiridíneo (DCP). A espessura da camada formada pelos ionenos imobilizados na presença de água foi medida experimentalmente ex-situ e in-situ por elipsometria. Finalmente, alguns ensaios de HPLC utilizando a sílica funcionalizada com ionenos como fase estacionária foram feitos de modo a avaliar sua aplicabilidade real. / Polysoaps are polymers consisting of amphiphilic monomeric units. In aqueous medium, the polysoaps form intra- or inter-polymeric microdomains capable to mimicking many of the properties of micelles, such as solubilization of organic molecules, exchanging counter-ions and catalyzing chemical reactions. The polysoaps used in our studies were [n, m]-ionenes, whose chemical structure consists of dimethylammoniun groups interconnected by aliphatic chain segments. [-(CH2)n-+N(CH3)2-(CH2)m-+N(CH3)2-]x Br- Br-[n,m]-Ioneno. In aqueous solution, [n, m]-ionenes with short methylenic segments, for example [3,10]-ionene, adopt an extended or rodlike conformations. In contrast, ionenes with longer segments, as the [3,22]-ionene, prefer globular conformations, forming microdomains through a process of intra-polymeric aggregation of the long segments. Because the ionenes are polymers, they can be immobilized on solid supports by covalent or electrostatic adsorption. The objective of this work was to develop new strategies for the efficient covalent immobilization of ionenes on solid supports. Ionenes can be selectively and quantitatively dequaternized (demethylated), forming the corresponding poly(tertiary amine): [-(CH2)n-+N(CH3)2-(CH2)m-+N(CH3)2-]x → [-(CH2)n-N(CH3)-(CH2)m-N(CH3)-]x. Unlike the ionene, the poly(tertiary amine) is soluble in organic medium, does not adsorb onto surfaces and possesses numerous reactive groups (the tertiary amines) distributed throughout the polymer chain. Suitable for immobilization of poly(tertiary amine) on silica funcionalizada with chloropropyl groups. The requaternization was performed with alkyl halides with distinct chain lengths (e.g., ethyl bromide or dodecyl bromide) and with 1,3-propanosultone (yielding zwitterionic ionenes with amoniopropane-sulfonate groups). The fluorescence (maximum wavelength and emission) of 4-amino-1-naphthalene sulfonic acid (AMS) was useful for the detection of the presence of microdomains formed by the immobilized ionenes on silica. The intensity ratio of the I/III vibrational bands of the fluorescence of pyrene dissolved in the microdomains was used to infer the residual degree of contact between pyrene and water at surface of the microdomains. \"The catalytic\" properties of the immobilized ionenes was invetigated by measuring the rate of alkaline hydrolysis of p-nitrophenyl octanoate (NPO) and of the N-dodecyl-4-cyanopyridinium ion (DCP). The thickness of the layer formed by the immobilized ionenes in the presence of water was measured experimentally ex-situ and in-situ by ellipsometry. Finally, some HPLC tests using silica functionalized with ionenes as the stationary phase were made in order to evaluate thesis applicability.
6

Imobilização de polieletrólitos do tipo ionenos em suportes sólidos / Immobilization of Polyelectrolytes of Ionene Types in Solid Supports

Maria Fernanda Baptista Munhoz 27 March 2009 (has links)
Os polissabões são polímeros constituídos de unidades monoméricas anfifílicas. Em meio aquoso, os polissabões formam microdomínios intra- ou inter-poliméricos capazes de mimetizar muitas das propriedades de micelas, como solubilizar moléculas orgânicas, trocar contraíons e catalisar reações químicas. Os polissabões utilizados em nossos estudos foram os [n,m]-Ionenos, cuja estrutura química consiste de grupos dimetilamônio interligados por segmentos de cadeia alifática. [-(CH2)n-+N(CH3)2-(CH2)m-+N(CH3)2-]x Br- Br-[n,m]-Ioneno. Em solução aquosa, os [n,m]-Ionenos com segmentos metilênicos curtos, como por exemplo o [3,10]-Ioneno, adotam uma conformação extendida tipo \"bastão\". Por outro lado, ionenos com segmentos mais compridos, como o [3,22]-Ioneno, preferem conformações globulares, formando microdomínios através de um processo de agregação intra-polimérica dos segmentos compridos. Pelo fato de ionenos serem polímeros, podem ser imobilizados em suportes sólidos, tanto covalentemente como por adsorção eletrostática. O objetivo desse trabalho foi desenvolver novas estratégias para a eficiente imobilização covalente de ionenos sobre suportes sólidos. Os ionenos podem ser seletiva e quantitativamente desquaternizados (desmetilados), formando a poli(amina terciária) correspondente: [-(CH2)n-+N(CH3)2-(CH2)m-+N(CH3)2-]x → [-(CH2)n-N(CH3)-(CH2)m-N(CH3)-]x. Ao contrário do ioneno, a poli(amina terciária) é solúvel em meio orgânico, não apresenta forte tendência de adsorver em superfícies e possui numerosos grupos reativos (as aminas terciárias) distribuídos ao longo de toda cadeia polimérica, adequados para a imobilização da poli(amina terciária) em sílica funcionalizada com grupos cloropropil. A requaternização foi feita com vários reagentes, incluindo haletos de alquila com comprimentos de cadeia distintos (e.g., brometo de etila ou brometo de dodecila) e com 1,3-propanosultona (que fornece ionenos zwitteriônicos com grupos amôniopropano-sulfonato). A fluorescência (comprimento de onda máximo e emissão) do ácido 4-amino-1-naftaleno sulfônico (AMS) mostrou-se útil para a detecção da presença de microdomínios formados pelos ionenos imobilizados na sílica. A relação de intensidades das bandas vibracionais I/III do espectro de fluorescência do pireno dissolvido nos microdomínios permitiu inferir o grau residual de contato entre pireno e a água na superfície dos microdomínios. As propriedades \"catalíticas\" dos ionenos imobilizados foram averiguadas por meio de medidas da velocidade da hidrólise alcalina do octanoato de p-nitrofenila (NPO) e do brometo de N-dodecil-4-cianopiridíneo (DCP). A espessura da camada formada pelos ionenos imobilizados na presença de água foi medida experimentalmente ex-situ e in-situ por elipsometria. Finalmente, alguns ensaios de HPLC utilizando a sílica funcionalizada com ionenos como fase estacionária foram feitos de modo a avaliar sua aplicabilidade real. / Polysoaps are polymers consisting of amphiphilic monomeric units. In aqueous medium, the polysoaps form intra- or inter-polymeric microdomains capable to mimicking many of the properties of micelles, such as solubilization of organic molecules, exchanging counter-ions and catalyzing chemical reactions. The polysoaps used in our studies were [n, m]-ionenes, whose chemical structure consists of dimethylammoniun groups interconnected by aliphatic chain segments. [-(CH2)n-+N(CH3)2-(CH2)m-+N(CH3)2-]x Br- Br-[n,m]-Ioneno. In aqueous solution, [n, m]-ionenes with short methylenic segments, for example [3,10]-ionene, adopt an extended or rodlike conformations. In contrast, ionenes with longer segments, as the [3,22]-ionene, prefer globular conformations, forming microdomains through a process of intra-polymeric aggregation of the long segments. Because the ionenes are polymers, they can be immobilized on solid supports by covalent or electrostatic adsorption. The objective of this work was to develop new strategies for the efficient covalent immobilization of ionenes on solid supports. Ionenes can be selectively and quantitatively dequaternized (demethylated), forming the corresponding poly(tertiary amine): [-(CH2)n-+N(CH3)2-(CH2)m-+N(CH3)2-]x → [-(CH2)n-N(CH3)-(CH2)m-N(CH3)-]x. Unlike the ionene, the poly(tertiary amine) is soluble in organic medium, does not adsorb onto surfaces and possesses numerous reactive groups (the tertiary amines) distributed throughout the polymer chain. Suitable for immobilization of poly(tertiary amine) on silica funcionalizada with chloropropyl groups. The requaternization was performed with alkyl halides with distinct chain lengths (e.g., ethyl bromide or dodecyl bromide) and with 1,3-propanosultone (yielding zwitterionic ionenes with amoniopropane-sulfonate groups). The fluorescence (maximum wavelength and emission) of 4-amino-1-naphthalene sulfonic acid (AMS) was useful for the detection of the presence of microdomains formed by the immobilized ionenes on silica. The intensity ratio of the I/III vibrational bands of the fluorescence of pyrene dissolved in the microdomains was used to infer the residual degree of contact between pyrene and water at surface of the microdomains. \"The catalytic\" properties of the immobilized ionenes was invetigated by measuring the rate of alkaline hydrolysis of p-nitrophenyl octanoate (NPO) and of the N-dodecyl-4-cyanopyridinium ion (DCP). The thickness of the layer formed by the immobilized ionenes in the presence of water was measured experimentally ex-situ and in-situ by ellipsometry. Finally, some HPLC tests using silica functionalized with ionenes as the stationary phase were made in order to evaluate thesis applicability.
7

Tailoring Structure and Function of Imidazole-Containing Block Copolymers for Emerging Applications from Gene Delivery to Electromechanical Devices

Green, Matthew Dale 06 December 2011 (has links)
The imidazole ring offers great potential for a variety of applications including gene delivery vectors, ionic liquids, electromechanical actuators, and novel monomers and polymers. The imidazole ring provides a unique building block for these applications due to its thermal stability, aromatic nature, ability to form ionic salts, and ease of functionalization. Free radical polymerization of 1-vinylimidazole (1-VIm) and free radical copolymerizations with methyl methacrylate (MMA) and n-butyl acrylate (nBA) afforded homopolymers and copolymers with tunable solution and thermal properties. Aqueous SEC provided reproducible and reliable molecular weights for poly(1-VIm) in the absence of polymer aggregates. Analysis of the thermal properties revealed ideal random copolymers with MMA and non-ideal copolymers with nBA. Small angle X-ray scattering determined that the spacing between ionic groups remained constant with increased nonionic comonomer incorporation while the spacing between adjacent polymer backbones increased. Functionalization of 1-VIm with varying length alkyl halides and polymerization prepared a series of imidazolium homopolymers. Anion exchange reactions controlled the thermal and solution properties, and the bromide counteranion quantitatively exchanged to tetrafluoroborate (BF4), trifluoromethanesulfonate (TfO), and bis(trifluoromethanesulfonyl)imide (Tf2N). Thermogravimetric analysis revealed that thermal stability increased with decreased alkyl substituent length and larger counteranion size, and differential scanning calorimetry determined that glass transition temperature (Tg) decreased with increased alkyl substituent length and larger counteranion size. Electrochemical impedance spectroscopy determined the ionic conductivities of the imidazolium homopolymers, and analysis using the Vogel-Fulcher-Tammann equation revealed that the activation energy of ion conduction increased as alkyl substituent length increased. Polymer morphology determined using X-ray scattering also influenced the ionic conductivity. As the alkyl substituent length increased, the spacing between adjacent polymer backbones increased, which decreased the ionic conductivity due to the ion-hopping mechanism of ion conduction. Unsuccessful attempts to control the radical polymerization of 1-VIm led to the investigation of 1-(4-vinylbenzyl)imidazole (VBIm), which is a styrenic-based monomer with excellent propagating radical stability. Triblock copolymers incorporating VBIm monomer into a soft random copolymer center block and reinforcing, hard segment outer blocks provided a template for tuning the properties of the ionomer membranes for electroactive devices. Analysis of the morphology and mechanical properties using small angle X-ray scattering and dynamic mechanical analysis determined microphase separation and optimal mechanical properties for electromechanical transducer fabrication. Testing electromechanical transducers revealed superior performance relative to the benchmark Nafion®. Optimization of triblock copolymer design criteria through varying the comonomer ratio of VBIm and nBA in the soft center block, quaternization reactions, and ionic liquid introduction influenced mechanical properties and ionic conductivity. Higher percentages of VBIm and quaternization of VBIm in the random central block increased Tg and ionic conductivity. IL selectively incorporated into the imidazole-containing phases with no leakage observed for ionic systems, reduced the center block Tg, and increased ionic conductivity. Controlling charge density along poly(1-VIm) through well-defined alkylation reactions with 1-bromobutane provided a potential vector for nonviral gene delivery and polyanion binding. Analysis of DNA and heparin binding using gel electrophoresis revealed a decrease in N/P ratio with increased alkylation percentage. Dynamic light scattering indicated an increase in zeta potential with increasing alkylation percentages, and relatively uniform polyplex sizes in aqueous media. The MTT assay developed cytotoxicity profiles with little toxicity prior to 83% alkylation. Finally, the luciferase expression assay revealed inefficient nucleic acid delivery to multiple cell types. Synthesis of poly(1-VIm) vectors with glutathione conjugates provided an avenue for simultaneous therapeutic gene and anti-oxidant delivery in vitro. Cytotoxicity assays of cells pretreated with glutathione-conjugated poly(1-VIm) prior to oxidative stress showed that higher glutathione conjugation levels improved cell viability. / Ph. D.
8

Functionalized Hyperbranched Polymers And Nonionenes

Roy, Raj Kumar 07 1900 (has links) (PDF)
In 1980’s a new class of material named as dendrimer became popular both in the field of polymer science and engineering. Dendrimer is an example of symmetric, highly branched three dimensional globular nano-object. It possess several interesting physical and chemical properties like low solution and melt-viscosity, lower intermolecular chain entanglement, large number of end groups placed at the molecular periphery, relatively high solubility with respect to their linear counterpart. In order to get this perfectly branched structure, one has to go through the tedious multistep synthetic approach, repetitive chromatographic purification and protection-deprotection strategies in every step; all of which limits the large scale production and thus commercialization. On the other hand, hyperbranched polymer, a highly branched analogue of dendritic polymer with few defects in their branching architecture, which can be prepared in a single step, show similar physical and chemical properties as that of dendrimer. Polymerization of AB2 monomer is one of the well established method to generate hyperbranched polymer which upon polymerization, generates plenty of ‘B ’groups at the periphery along with a single ‘A’ group as a focal point in the resulting hyperbranched polymer as shown in Figure 1. From the structural point of view, hyperbranched polymers consist of three distinctly different compartments such as periphery, interior and a (single) focal point. During the past decade our lab have developed a novel melt trans-etherification process to generate polyethers and have utilized to access to a wide variety of hyperbranched structures. One of the challenges we addressed is to selectively functionalize the periphery of the hyperbranched polymer during the polymerization process. Polycondensation of ‘AB2’ monomer is not sufficient enough to generate a wide variety of hyperbranched polymer as the periphery of hyperbranched polymer is limited to the ‘B’ functional group unless it could be modified via ‘post-polymerization modifications’. Copolymerization of ‘AB2’ monomer with stoichiometric amount of ‘A-R’ monomer should result in hyperbranched polymer decorated with ‘R’ groups in the periphery that can be prepared in a single step. One of the prerequisite in the ‘AB2+A-R’ approach is that the comonomer ‘A-R’ should have silent ‘R’ group which does not interfere during the polymerization. During the copolymerization process with stoichiometric amount of ‘A-R’ monomer, ‘AB2’ monomer having one equivalent excess of ‘B’ can react with the ‘A’ group from ‘A-R’ monomer eventually generating the hyperbranched structure with peripheral ‘R’ groups. By appropriately choosing the ‘R’ group, one can access a wide class of hyperbranched polymer with the required functionality. Further by having a reactive ‘R’ group that is not participating in polymerization can act as a handle for post-polymerization modifications. For instance, copolymerization of 1-(6-Hydroxyhexyloxy)-3,5-bis(methoxymethyl)-2,4,6-trimethylbenzene (Hydroxy as ‘A’ and methoxy as ‘B’) and 6-bromo-1-hexanol where ‘OH’ and ‘-(CH2)6Br’ is ‘A’ and ‘R’ functional groups respectively, generates hyperbranched polymer with peripheral alkyl bromide functional groups as shown in Figure 2. The peripheral alkylbromides has been quantitatively transformed to quaternary ammonium or pyridinium salts using trimethyl amine or pyridine respectively. Thus by the post polymerization modification, we have transformed a hydrophobic hyperbranched polymer to a water soluble cationic hyperbranched polymer by simple and efficient post-polymerization modification. In a slightly different objective we Another problem that I have addressed is the difficulty associated with the aforementioned copolymerization approach. In spite of the fact that stoichiometric amounts of ‘A-R’ type monomer was taken in ‘AB2 + A-R’ approach, the extent of peripheral functionalization i.e. the incorporation of ‘R’ group is relatively lower. Further the molecular weight of the hyperbranched polymer obtained is also not high. One of the reasons we adopted ‘AB2 + A-R’ approach is to provide a functional handle for the subsequent post-polymerization modification. We modified the ‘AB2’ type monomer with a functionalizable handle to circumvent the lower amount of incorporation of the ‘A-R’ type monomer in ‘AB2 + A-R’ approach. Of all the readily functionalizable handles, click chemistry found to be a very useful tool for the post-polymerization modifications as the reactions conditions are mild, no side product, high selectivity, easy purification, etc. Another advantage of this reaction is that, we can incorporate any type of functional group starting from a single clickable parent hyperbranched polymer. In this particular project, I have Earlier design of the ‘AB2’ type monomer in our group, to prepare hyperbranched polymer via melt transetherification process, involved benzylic methoxy groups as ‘B’ in ‘AB2’ monomer leading to a hyperbranched polymer with peripheral methoxy groups. Transetherification under melt-conditions is an equilibrium reaction which was driven towards the hyperbranched polymer by continuous removal of methanol from the system as a volatile alcohol. In the new design of ‘AB2’ monomer; we have used benzylic allyloxy groups as ‘B’ in ‘AB2’ monomer, where in polymerization is driven by the continuous removal of allyl alcohol (instead of methanol as in the previous case), generates hyperbranched polymer with peripheral allyloxy group containing hyperbranched polymer. The allyloxy groups can be subsequently functionalized with a variety of thiol, we prepared a hydrocarbon-soluble octadecyl-derivative, amphiphilic systems using 2-mercaptoethanol and chiral amino acid (N-benzoyl cystine) hyperbranched structures by using thiol-ene click reactions (Figure 3). Polymers prepared from the parent hyperbranched polymer have significantly different physical properties like glass transition temperature (Tg), melting point (Tm) etc; thus considering the versatility of functionalization, parent polymer could be envisioned as a clickable hyperscaffold. More interestingly by functionalizing cystine derivative, we have demonstrated the possibility of biconjugation of the hyperbranched polymer. In summary, the limitations of ‘AB2+A-R’ copolymerization approach (low molecular weight Molecular weight and molecular weight distribution are very important parameters that influence the physical property and thus the application of the polymeric materials. As predicted by Flory, hyperbranched polymers are inherently polydisperse in nature and it tends to infinity when the percent of conversion is very high. Experimentally observed value of polydispersity is also significantly higher compared to their linear analogues. Control of the molecular weight and polydispersity of hyperbranched polymer by using a suitable amount of reactive multifunctional core has been demonstrated in this project. We have substantiated by using very little amount of ‘B3’ core along with ‘AB2’ monomer; wherein ‘B’ in ‘B3’ are more reactive than ‘B’ in ‘AB2’ monomer, regulate the molecular weight and polydispersity of the resulting hyperbranched polymer. As the ratio of core to monomer increases the molecular weight and polydispersity reduces in nearly linear fashion. In a slightly different objective, the core and periphery are functionalized with two different fluorophore by using orthogonal click reactions and demonstrated the possibility of energy transfer from periphery to the core of the hyperbranched polymer. In this section of my thesis, the self-assembly behavior of a periodically grafted amphiphilic copolymer has been studied. Polymer was synthesized via melt transesterification approach where hexaethylene glycol monomethyl ether (HEG) containing diester monomers are reacted with alkylyne diol monomers with varying carbon spacer (C12 and Another interesting problem, I approached is to functionalize the interior part of the hyperbranched polymer. In the case of dendrimer, as it is a step-wise synthesis, internal functionalization could be accomplished with the order of monomer addition i.e. by putting the internal functional group containing monomer first followed by other monomer not having those functional groups, whereas it is a bit challenging task for hyperbranched polymers especially when dealing with polycondensation of AB2 monomers, as it is a single step polymerization process. For a hyperbranched polymer in the polycondensation of ‘AB2’ monomer, the internal functional group should reside in between of the ‘A’ and ‘B’ functional group wherein the internal functional groups are silent during the process of polymerization. In order to do so, we have designed and synthesized a new AB2 monomer (a in Figure: 4). Here decanol is the volatile condensate that was removed during the transetherification reactions leading to a hyperbranched polymer having allyl group as the internal functional group and decyloxy as the peripheral functional group (b in Figure: 4). As a post-polymerization modification, the interior allyl groups were modified by thiol-ene click reaction with variety of thiol derivatives. In one example, the inherent hydrophobic nature of the parent hyperbranched polymer which is enhanced by the decyl chain at the molecular periphery, is converted to a alkaline water soluble hyperbranched polymer by the click reaction with mercapto succinic acid (d in Figure: 4) or mercapto propionic acid (c in Figure: 4) to the internal allyl groups, generating a novel amphiphilic hypersystem. This kind of amphiphilic systems are very interesting to study for their self-assembly behavior, in this particular case, the modified hyperbranched polymer adopts as a large spherical aggregates in alkaline water evidenced by FESEM (Figure: 4) and AFM images. Further investigation is being carried out to understand the exact nature of these aggregates. As the hyperbranched polymer contained ‘-S-‘ group in the interior, we utilized this as the scaffold for scavenging heavy metal ions like Hg2+ from aqueous solutions to the chloroform solution containing polymer. This hyperbranched polymer could trap Hg2+ ions even when present in ppm level of contamination.
9

Controlling Conformation Of Macromolecules Using Non-Covalent Interaction And Micellization Behaviour Of Isomeric Phenyl Bearing Cationic Surfactants

De, Swati 01 1900 (has links) (PDF)
This thesis contains investigations in two different areas, described under six chapters. Chapter 1 contains a broad introduction to the area of foldamers, while Chapters 2, 3, 4, and 5 deal with various novel classes of synthetic polymers which can form folded structures in solution utilizing different non-covalent interactions. Chapter 6 deals with a distinctly different topic, where the objective was to study the effect of phenyl ring location on the micellization properties of a series of isomeric cationic surfactants. Synthetic polymers typically adopt a random coil conformation in solution, which is primarily an entropy driven process. So the generation of well-defined secondary structures in synthetic polymers requires specific intra-chain inter-segment interactions that will give adequate enthalpic contribution to overcome the entropic penalty associated with the formation of well-ordered conformations. During the past decade, various research groups have made significant effort to understand the essential design elements that could enable secondary structure formation in synthetic macromolecules through intra-chain inter-segment interactions, such as hydrogen bonding, solvophobic and solvophilic interaction, acid-base interaction, bond angle constraint, steric interaction, charge-transfer interaction, metal-ion complexation etc.1 Gellman2 first used the term “foldamer” to describe “any polymer with a strong tendency to adopt a specific compact conformation” which was more precisely defined by Moore and coworkers3 as “any oligomer that folds into a conformationally ordered state in solution, the structures of which are stabilized by a collection of non-covalent interactions between nonadjacent monomer units” and where the folded conformation is one of the various possible conformations. Several classes of foldamers have been studied during the past decade; a majority of them are well-defined oligomers that possess relatively restricted conformational degrees of freedom. Relatively fewer studies have explored conformational control in flexible high molecular weight polymers that possess greater conformational freedom.4 A few years ago, Ghosh et al. designed a polymeric system wherein charge-transfer interactions between alternatively placed electron-rich and electron-deficient aromatic units, aided by metal-ion complexation and solvophobic interactions, causes the polymer chain to adopt a specific folded conformation.5 Such charge-transfer induced folding was first studied by Iverson and co-workers6 in well-defined oligomers and was later elaborated by Zhao et al.7 to generate alternate designs to fold oligomeric systems. In all these studies, the C-T interactions served not only to assist the folding process but it also served as a valuable spectroscopic signature to study the folding process. The objectives of the present study are to develop simple synthetic strategies to generate different types of polymers that could be fold in solution using various noncovalent interactions. We have developed a simple synthetic strategy to design a new type of donor (1,5-dialkoxynaphthalene-DAN) containing polymer that carries a tertiary amine unit in the spacer segment, which could interact strongly with a suitably designed acceptor (pyromellitic diimide-PDI) bearing folding agent that carries a carboxylic acid group, as shown in Scheme 1.8 This acid-base interaction, brings the acceptor unit in a suitable position so as to form a C-T complex with the adjacent donors, resulting in the folding of the polymer chain. The folded conformation was studied using UV-vis and NMR spectroscopy and the folding propensities were rationalized using DFT studies. The highest association constant between the folding agent and the polymer was estimated to be around 1200 M-1. Scheme 1. Schematic representation of folding aided by two-point interactions with a folding agent. This value of association constant was not adequate to realize some potentially interesting properties in solid state. In an attempt to develop alternate systems, that could exhibit stronger propensity to fold, we designed a new type of cationic ionene,9 wherein electron-rich (DAN) and electron-deficient (PDI) aromatic units were included within the alkylene segments in an alternating fashion, as shown in Scheme 2.10 The charge-transfer (C-T) interaction between the donor and acceptor units in neighbouring segments of the ionene not only reinforced the transition to the collapsed nano-bundle form but also provides a useful spectroscopic handle to monitor the conformational change. The UV-visible spectra of these novel D-A ionene solutions at a fixed concentration in four different solvents, namely water, methanol, acetonitrile and DMSO, show different extents of charge-transfer interaction. The colour of the solution in water was deep-red, whereas in acetonitrile, it was light-yellow. The conformational transition could also be induced by titrating an acetonitrile solution of the ionene with increasing amounts of water causing a dramatic increase in the intensity of the charge-transfer band, which reflects the extent of collapse to the zig-zag state that brings the donor and acceptor units together. AFM studies confirmed the presence of flat pancake-like aggregates having nearly constant height of about 3-5 nm, which was in accordance with the estimated thickness of the postulated zig-zag structure. Scheme 2. Schematic depiction of folding of D-A ionene (left), AFM micrograph showing pancake-like aggregates of D-A ionenes (right-top), a line scan depicting the heights and diameters of the aggregates along with a schematic depiction of the aggregate (right-bottom). Scheme 3. Schematic representation of folding aided by interactions with a folding agent. In order to explore this concept further, we designed a two component system wherein the solvophobically-driven collapse of a DAN-containing ionene chain in a polar solvent is reinforced by intercalation with a suitably designed electron-deficient acceptor-containing external folding agent. DAN containing ionene polymer chains in polar solvent form an accordion-type zig-zag structure that brings adjacent donor units in close proximity; this provided an ideal hydrophobic pocket for intercalation of suitably designed electron-deficient acceptor molecules, the additional driving motivation for the intercalation being the formation of a C-T complex as shown in Scheme 3.11 Several acceptor-bearing molecules were prepared by the derivatization of pyromellitic dianhydride and naphthalene tetracarboxylic dianhydride with two different oligoethylene glycol monomethyl ether monoamines. UV-vis spectroscopic studies were carried out by using a 1:1 mixture of the DAN-ionenes and different acceptor molecules in water/DMSO solvent mixtures. The intensity of the charge-transfer (C-T) band was seen to increase with the water content in the solvent mixture, thereby suggesting that the intercalation is indeed aided by solvophobic effects. The naphthalene diimide (NDI) bearing acceptor molecules consistently formed significantly stronger C-T complexes when compared to the pyromellitic diimide (PDI) bearing acceptor molecules, which is a reflection of the stronger π-stacking tendency of the former. The highest association constant between the folding agent and the polymer was estimated to be around 4519 M-1, which was a substantial improvement over the earlier reported values.9 With a slight modification in the pendant group, we designed a water-soluble DAN-containing ionene, which can intercalate hydrophobic electron-deficient molecules, like TNT (2,4,6-trinitrotoluene), within the hydrophobic interstices between DAN units (as shown in Scheme 4), causing a depletion in fluorescence from the DAN units; TNT at concentration as low as 30 nM could be detected in this manner. Scheme 4. Schematic representation of folding of water soluble ionene and interactions with an electron-deficient hydrophobic moiety TNT. Scheme 5. Schematic representation of folded D-A allyl ionene. In light of the growing interest in single-chain polymeric nanoparticles, the fully collapsed D-A ionenes in water could be viewed as polymeric nanoparticles that are stitched together by reversible weak noncovalent interactions. In an attempt to transform the folded structure into a polymeric nanoparticle using covalent bonding, we designed D-A ionene that carries potentially polymerizable allyl units on the cationic head group instead of the dimethyl amine head group that was used in previous examples (as shown in Scheme 5). Preliminary studies showed that polymerization does not proceed readily; however, thiol-ene based clicking strategy enabled partial stitching of the folded segments, by the use of a suitably designed dithiol. In the last section of this thesis, we examined the effect of phenyl ring location on the micellization properties of a series of isomeric cationic surfactants, wherein the phenyl ring location was varied from head to tail region (as shown in Scheme 6).12 Thus, cationic surfactants (S1-S5) bearing a long alkyl chain that carries a 1,4phenylene unit and a trimethyl ammonium headgroup was synthesized and their solution properties were examined. Micellization behavior was studied using conductivity, ITC (Isothermal Titration Calorimetry), SANS (Small-Angle Neutron Scattering) and NMR. These present studies demonstrated that the presence of a large rigid ring near the hydrocarbon tail-end of the surfactant leads to a dramatic change in the micelle structure; the driving motivation to form micelles in such systems is greatly reduced and the micelles that are formed are relatively smaller and contain significantly fewer surfactants. NMR studies of micellar solutions of these surfactants indicate that the variation in the phenyl ring location may also help to probe the microenvironment at various depths within the micellar aggregates. Scheme 6. Structures of the various surfactant molecules carrying the 1,4-dioxyphenylene unit at different locations within hydrophobic segment (left), variation of CMC values (right). References (1) Foldamers - structure, properties, and applications, edited by Stefan Hecht and Ivan Huc, Wiley-VCH, 2007. (2) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (3) Hill, D. J.; Mio, M. J.; Prince, R. B.; Huges, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893. (4) (a) Wang, W.; Li, L. S.; Helms, G.; Zhou, H. H.; Li, A. D. Q. J. Am. Chem. Soc. 2003, 125, 1120. (b) Li, A. D. Q.; Wang, W.; Wang, L. Q. Chem. Eur. J. 2003, 9, 4594. (c) Neuteboom, E. E.; Meskers, S. C. J.; Meijer, E. W.; Janssen, R. A. J. Macromol. Chem. Phys. 2004, 205, 217. (d) Balbo Block, M. A.; Hecht, S. Macromolecules 2004, 37, 4761. (5) (a) Ghosh, S.; Ramakrishnan, S. Angew. Chem. Int. Ed. 2004, 43, 3264. (b) Ghosh, S.; Ramakrishnan, S. Angew. Chem. Int. Ed. 2005, 44, 5441. (6) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303. (7) Zhao, X.; Jia, M. X. Jiang, X. K.; Wu, L. Z.; Li, Z. T.; Chen. G. J. J. Org. Chem. 2004, 69, 270. (8) De, S.; Koley, D.; Ramakrishnan, S. Macromolecules 2010, 43, 3183. (9) Williams, S. R.; Long, T. E. Prog. Polym. Sci. 2009, 34, 762. (10) De, S.; Ramakrishnan, S. Macromolecules 2009, 42, 8599. (11) De, S.; Ramakrishnan, S. Chem. Asian J. 2011, 6, 149. (12) De, S.; Aswal, V. K.; Ramakrishnan, S. Langmuir 2010, 26, 17882. (For structural formula pl see the abstract file.

Page generated in 0.0727 seconds