• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Cauchy-Riemann equation with support conditions on domains with Levi-degenerate boundaries

Brinkschulte, Judith 19 April 2002 (has links)
In einem ersten Teil betrachten wir ein relativ kompaktes Gebiet Omega einer n-dimensionalen Kähler-Mannigfaltigkeit, mit Lipschitz-Rand, welches eine gewisse "log delta"-Pseudokonvexität besitzt. Wir zeigen, dass die Cauchy-Riemann Gleichung mit exaktem Träger in Omega für alle Bigrade (p,q) mit 0< q< n-1 eine Lösung besitzt. Ausserdem ist das Bild des Cauchy-Riemann Operators auf glatten (p,n-1)-Formen mit exaktem Träger in Omega abgeschlossen. Wir geben Anwendungen für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichungen für glatte Formen und Ströme auf Rändern von schwach pseudokonvexen Gebieten Steinscher Mannigfaltigkeiten und für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichungen für Ströme auf Levi-flachen CR Mannigfaltigkeiten beliebiger Kodimension. In einem zweiten Teil untersuchen wir die Cauchy-Riemann Gleichung mit Randbedingung Null entlang einer Hyperfläche mit konstanter Signatur. Wir geben Anwendungen für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichung für glatte Formen mit kompaktem Träger und für Ströme auf der Hyperfläche. Wir zeigen auch, dass das Hartogs-Phänomen in schwach 2-konvex-konkaven Hyperflächen mit konstanter Signatur Steinscher Mannigfaltigkeiten gilt. / In a first part, we consider a domain Omega with Lipschitz boundary, which is relatively compact in an n-dimensional Kaehler manifold and satisfies some "log delta-pseudoconvexity" condition. We show that the Cauchy-Riemann equation with exact support in Omega admits a solution in bidegrees (p,q), 1 < q < n. Moreover, the range of the Cauchy-Riemann operator acting on smooth (p,n-1)-forms with exact support in Omega is closed. Applications are given to the solvability of the tangential Cauchy-Riemann equations for smooth forms and currents for all intermediate bidegrees on boundaries of weakly pseudoconvex domains in Stein manifolds and to the solvability of the tangential Cauchy-Riemann equations for currents on Levi-flat CR manifolds of arbitrary codimension. In a second part, we study the Cauchy-Riemann equation with zero Cauchy data along a hypersurface with constant signature. Applications to the solvability of the tangential Cauchy-Riemann equations for smooth forms with compact support and currents on the hypersurface are given. We also prove that the Hartogs phenomenon holds in weakly 2-convex-concave hypersurfaces with constant signature of Stein manifolds.

Page generated in 0.0623 seconds