1 |
Berezin--Toeplitz quantization and noncommutative geometryFalk, Kevin 11 September 2015 (has links)
Cette thèse montre en quoi la quantification de Berezin--Toeplitz peut être incorporée dans le cadre de la géométrie non commutative.Tout d'abord, nous présentons les principales notions abordées : les opérateurs de Toeplitz (classiques et généralisés), les quantifications géométrique et par déformation, ainsi que quelques outils de la géométrie non commutative.La première étape de ces travaux a été de construire des triplets spectraux (A,H,D) utilisant des algèbres d'opérateurs de Toeplitz sur les espaces de Hardy et Bergman pondérés relatifs à des ouverts Omega de Cn à bord régulier et strictement pseudoconvexes, ainsi que sur l'espace de Fock sur Cn. Nous montrons que les espaces non commutatifs induits sont réguliers et possèdent la même dimension que le domaine complexe sous-jacent. Différents opérateurs D sont aussi présentés. Le premier est l'opérateur de Dirac usuel sur L2(Rn) ramené sur le domaine par transport unitaire, d'autres sont formés à partir de l'opérateur d'extension harmonique de Poisson ou de la dérivée normale complexe sur le bord de Omega.Dans un deuxième temps, nous présentons un triplet spectral naturel de dimension n+1 construit à partir du produit star de la quantification de Berezin--Toeplitz. Les éléments de l'algèbre correspondent à des suites d'opérateurs de Toeplitz dont chacun des termes agit sur un espace de Bergman pondéré. Plus généralement, nous posons des conditions pour lesquelles une somme infinie de triplets spectraux forme de nouveau un triplet spectral, et nous en donnons un exemple. / The results of this thesis show links between the Berezin--Toeplitz quantization and noncommutative geometry.We first give an overview of the three different domains we handle: the theory of Toeplitz operators (classical and generalized), the geometric and deformation quantizations and the principal tools we use in noncommutative geometry.The first step of the study consists in giving examples of spectral triples (A,H,D) involving algebras of Toeplitz operators acting on the Hardy and weighted Bergman spaces over a smoothly bounded strictly pseudoconvex domain Omega of Cn, and also on the Fock space over Cn. It is shown that resulting noncommutative spaces are regular and of the same dimension as the complex domain. We also give and compare different classes of operator D, first by transporting the usual Dirac operator on L2(Rn) via unitaries, and then by considering the Poisson extension operator or the complex normal derivative on the boundary.Secondly, we show how the Berezin--Toeplitz star product over Omega naturally induces a spectral triple of dimension n+1 whose construction involves sequences of Toeplitz operators over weighted Bergman spaces. This result led us to study more generally to what extent a family of spectral triples can be integrated to form another spectral triple. We also provide an example of such triple.
|
2 |
The Cauchy-Riemann equation with support conditions on domains with Levi-degenerate boundariesBrinkschulte, Judith 19 April 2002 (has links)
In einem ersten Teil betrachten wir ein relativ kompaktes Gebiet Omega einer n-dimensionalen Kähler-Mannigfaltigkeit, mit Lipschitz-Rand, welches eine gewisse "log delta"-Pseudokonvexität besitzt. Wir zeigen, dass die Cauchy-Riemann Gleichung mit exaktem Träger in Omega für alle Bigrade (p,q) mit 0< q< n-1 eine Lösung besitzt. Ausserdem ist das Bild des Cauchy-Riemann Operators auf glatten (p,n-1)-Formen mit exaktem Träger in Omega abgeschlossen. Wir geben Anwendungen für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichungen für glatte Formen und Ströme auf Rändern von schwach pseudokonvexen Gebieten Steinscher Mannigfaltigkeiten und für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichungen für Ströme auf Levi-flachen CR Mannigfaltigkeiten beliebiger Kodimension. In einem zweiten Teil untersuchen wir die Cauchy-Riemann Gleichung mit Randbedingung Null entlang einer Hyperfläche mit konstanter Signatur. Wir geben Anwendungen für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichung für glatte Formen mit kompaktem Träger und für Ströme auf der Hyperfläche. Wir zeigen auch, dass das Hartogs-Phänomen in schwach 2-konvex-konkaven Hyperflächen mit konstanter Signatur Steinscher Mannigfaltigkeiten gilt. / In a first part, we consider a domain Omega with Lipschitz boundary, which is relatively compact in an n-dimensional Kaehler manifold and satisfies some "log delta-pseudoconvexity" condition. We show that the Cauchy-Riemann equation with exact support in Omega admits a solution in bidegrees (p,q), 1 < q < n. Moreover, the range of the Cauchy-Riemann operator acting on smooth (p,n-1)-forms with exact support in Omega is closed. Applications are given to the solvability of the tangential Cauchy-Riemann equations for smooth forms and currents for all intermediate bidegrees on boundaries of weakly pseudoconvex domains in Stein manifolds and to the solvability of the tangential Cauchy-Riemann equations for currents on Levi-flat CR manifolds of arbitrary codimension. In a second part, we study the Cauchy-Riemann equation with zero Cauchy data along a hypersurface with constant signature. Applications to the solvability of the tangential Cauchy-Riemann equations for smooth forms with compact support and currents on the hypersurface are given. We also prove that the Hartogs phenomenon holds in weakly 2-convex-concave hypersurfaces with constant signature of Stein manifolds.
|
3 |
Regularity and boundary behavior of solutions to complex Monge–Ampère equationsIvarsson, Björn January 2002 (has links)
<p>In the theory of holomorphic functions of one complex variable it is often useful to study subharmonic functions. The subharmonic can be described using the Laplace operator. When one studies holomorphic functions of several complex variables one should study the plurisubharmonic functions instead. Here the complex Monge--Ampère operator has a role similar to that of the Laplace operator in the theory of subharmonic functions. The complex Monge--Ampère operator is nonlinear and therefore it is not as well understood as the Laplace operator. We consider two types of boundary value problems for the complex Monge--Ampere equation in certain pseudoconvex domains. In this thesis the right-hand side in the Monge--Ampère equation will always be smooth, strictly positive and meet a monotonicity condition. The first type of boundary value problem we consider is a Dirichlet problem where we look for plurisubharmonic solutions which are zero on the boundary of the domain. We show that this problem has a unique smooth solution if the domain has a smooth bounded plurisubharmonic exhaustion function which is globally Lipschitz and has Monge--Ampère mass larger than one everywhere. We obtain some results on which domains have such a bounded exhaustion function. The second type of boundary value problem we consider is a boundary blow-up problem where we look for plurisubharmonic solutions which tend to infinity at the boundary of the domain. Here we also assume that the right-hand side in the Monge--Ampère equation satisfies a growth condition. We study this problem in strongly pseudoconvex domains with smooth boundary and show that it has solutions which are Hölder continuous with arbitrary Hölder exponent α, 0 ≤ α < 1. We also show a uniqueness result. A result on the growth of the solutions is also proved. This result is used to describe the boundary behavior of the Bergman kernel.</p>
|
4 |
Regularity and boundary behavior of solutions to complex Monge–Ampère equationsIvarsson, Björn January 2002 (has links)
In the theory of holomorphic functions of one complex variable it is often useful to study subharmonic functions. The subharmonic can be described using the Laplace operator. When one studies holomorphic functions of several complex variables one should study the plurisubharmonic functions instead. Here the complex Monge--Ampère operator has a role similar to that of the Laplace operator in the theory of subharmonic functions. The complex Monge--Ampère operator is nonlinear and therefore it is not as well understood as the Laplace operator. We consider two types of boundary value problems for the complex Monge--Ampere equation in certain pseudoconvex domains. In this thesis the right-hand side in the Monge--Ampère equation will always be smooth, strictly positive and meet a monotonicity condition. The first type of boundary value problem we consider is a Dirichlet problem where we look for plurisubharmonic solutions which are zero on the boundary of the domain. We show that this problem has a unique smooth solution if the domain has a smooth bounded plurisubharmonic exhaustion function which is globally Lipschitz and has Monge--Ampère mass larger than one everywhere. We obtain some results on which domains have such a bounded exhaustion function. The second type of boundary value problem we consider is a boundary blow-up problem where we look for plurisubharmonic solutions which tend to infinity at the boundary of the domain. Here we also assume that the right-hand side in the Monge--Ampère equation satisfies a growth condition. We study this problem in strongly pseudoconvex domains with smooth boundary and show that it has solutions which are Hölder continuous with arbitrary Hölder exponent α, 0 ≤ α < 1. We also show a uniqueness result. A result on the growth of the solutions is also proved. This result is used to describe the boundary behavior of the Bergman kernel.
|
5 |
Le problème de Dirichlet pour les équations de Monge-Ampère complexes / The dirichlet problem for complex Monge-Ampère equationsCharabati, Mohamad 14 January 2016 (has links)
Cette thèse est consacrée à l'étude de la régularité des solutions des équations de Monge-Ampère complexes ainsi que des équations hessiennes complexes dans un domaine borné de Cn. Dans le premier chapitre, on donne des rappels sur la théorie du pluripotentiel. Dans le deuxième chapitre, on étudie le module de continuité des solutions du problème de Dirichlet pour les équations de Monge-Ampère lorsque le second membre est une mesure à densité continue par rapport à la mesure de Lebesgue dans un domaine strictement hyperconvexe lipschitzien. Dans le troisième chapitre, on prouve la continuité hölderienne des solutions de ce problème pour certaines mesures générales. Dans le quatrième chapitre, on considère le problème de Dirichlet pour les équations hessiennes complexes plus générales où le second membre dépend de la fonction inconnue. On donne une estimation précise du module de continuité de la solution lorsque la densité est continue. De plus, si la densité est dans Lp , on démontre que la solution est Hölder-continue jusqu'au bord. / In this thesis we study the regularity of solutions to the Dirichlet problem for complex Monge-Ampère equations and also for complex Hessian equations in a bounded domain of Cn. In the first chapter, we give basic facts in pluripotential theory. In the second chapter, we study the modulus of continuity of solutions to the Dirichlet problem for complex Monge-Ampère equations when the right hand side is a measure with continuous density with respect to the Lebesgue measure in a bounded strongly hyperconvex Lipschitz domain. In the third chapter, we prove the Hölder continuity of solutions to this problem for some general measures. In the fourth chapter, we consider the Dirichlet problem for complex Hessian equations when the right hand side depends on the unknown function. We give a sharp estimate of the modulus of continuity of the solution as the density is continuous. Moreover, for the case of Lp-density we demonstrate that the solution is Hölder continuous up to the boundary.
|
Page generated in 0.0633 seconds