• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 17
  • 11
  • 11
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Envolvimento das cavéolas na permeabilidade da barreira hematoencefálica após envenenamento por Phoneutria nigriventer em ratos = Involvement of the caveolae in the permeability of the blood-brain barrier after envenoming by Phoneutria nigriventer in rats / Involvement of the caveolae in the permeability of the blood-brain barrier after envenoming by Phoneutria nigriventer in rats

Soares, Edilene Siqueira, 1989- 04 July 2015 (has links)
Orientador: Maria Alice da Cruz-Höfling / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-27T16:36:47Z (GMT). No. of bitstreams: 1 Soares_EdileneSiqueira_M.pdf: 11448561 bytes, checksum: 00aace7be2d8fec579aea2fd4166f813 (MD5) Previous issue date: 2015 / Resumo: Neste trabalho investigamos a permeabilização da barreira hematoencefálica (BHE) pela peçonha da aranha Phoneutria nigriventer (PNV) através da via transcelular no cerebelo de ratos. As cavéolas foram analisadas nas células endoteliais pela expressão de proteínas associadas à sua formação (caveolina-1, Cav-1 e dinamina-2, Din2) e internalização (caveolina-1 fosforilada, pCav-1 e quinase da família Src, SKF), e nos astrócitos com avaliação da caveolina-3 (Cav-3) e da conexina-43 (Cx43) (formadora de junções comunicantes). A ação do PNV sobre o endotélio também foi avaliada pela ativação (acoplamento) ou inativação (desacoplamento) da enzima eNOS, produtora de óxido nítrico (NO). As estruturas que compõe a BHE foram avaliadas através de microscopia eletrônica de transmissão. Inicialmente, o estudo de Cav-1 contemplou sua localização, expressão gênica e proteica após o envenenamento em diferentes idades, ratos neonatos eram mais suceptíveis ao envenenamento do que ratos adultos. Após PNV, a imunomarcação para Cav-1 foi mais evidente na camada granular e molecular e em neurônios de Purkinje. A expressão Cav-1 e Din2 (foramdoras das vesículas e seu gargalo, respectivamente) aumentou em períodos de envenenamento agudo (1 h), de recuperação (5 h) e na ausência de sinais clínicos (24 h); em contrapartida SKF e pCav-1 envolvidas na internalização caveolar foram superexpressas em períodos opostos (às 2 h e 72 h). O PNV induziu aumento da metaloproteinase-9 da matriz (MMP9), importante mediadora de quebra da BHE e aumentou a formação e o tráfego de vesículas no endótelio após envenenamento. A análise de eNOS revelou desacoplamento (aumento de monômeros) nos períodos de envenenamento agudo (1-2 h) com progressivo retorno e super-expressão de dímeros (re-acoplamento) às 72 h; essas alterações foram relacionadas à ação do PNV sobre os níveis intracelulares de cálcio investigado pelo aumento na expressão de calmodulina e confimado pela localização de calbindina-D28. Os dados revelam a interferência do PNV sobre a homeostase endotelial e função vascular ao afetar o sistema eNOS/NO, importante controlador do tônus vascular. Nos astrócitos, as cavéolas são formadas por Cav-3 e sua superexpressão é associada a doenças neurológicas. O PNV aumentou significativamente os níveis basais de Cav-3 em astrócitos GFAP positivos (astrogliose reativa) em períodos de aumento de Cx43 (às 1, 5 e 24 h), e na vigência de edema citotóxico nos pés astrocitários e alterações nos contatos sinápticos axo-dendríticos e axo-somáticos. Em conjunto os resultados revelam que: (a) a quebra da via transcelular da BHE pelo PNV tem aumento da endocitose via cavéolas; (b) componentes da unidade neurovascular, como endotélio, astrócitos e neurônios estão intimamente envolvidos; (c) no endotélio, os efeitos são mediados pelo sistema eNOS/NO; (d) a SKF ativa o sistema endocítico e de transporte vesicular; (e) nos astrócitos, a dinamica expressão de Cx43 e Cav-3 e o retorno aos níveis basais em paralelo com a ausência de sinais de intoxicação nos animais (72 h) dá evidências de que ambas as proteínas interagem na resposta astrocitária. Os dados permitem sugerir que a presença de peptídeos neurotóxicos no veneno de Phoneutria nigriventer estão no centro dos efeitos aqui relatados / Abstract: In this work, we investigated the blood-brain barrier (BBB) permeabilization induced by Phoneutria nigriventer venom (PNV) in the transcellular route of rats¿ cerebellum. Caveolae was analyzed in endothelial cells accessing the expression of proteins involved in caveolae formation (caveolin-1, Cav-1 and dynamin-2, Dyn2) and internalization (phosphorylated Caveolin-1, pCav-1 and Src kinase family, SKF), in astrocytes caveolae role were evaluated with caveolin-3 (Cav-3) and connexin-43 (Cx43) (gap-junction main protein). PNV action on the endothelium was also investigated through activation (coupling) or inactivation (uncoupling) of eNOS enzyme, responsible for nitric oxide (NO) production. BBB components were evaluated using transmission electron microcopy. Initially, Cav-1 study addressed its localization along with Cav-1 protein and gene expression after envenoming in different age animals, neonate rats were more susceptible to envenoming than adult rats. After PNV, Cav-1 labeling was intense in granular and molecular layers and in Purkinje neurons. Cav-1 and Dyn2 (responsible for caveolae vesicles formation and scission, respectively) expression increased in periods of acute envenomation (1 h), recovery (5 h) and in the absence of clinical signals (24 h); in opposition SKF and pCav-1 involved in caveolae internalization were overexpress in opposite periods (at 2 h and 72 h). PNV induced increases in matrix metaloproteinases-9 (MMP9) an important BBB breakdown mediator, and increases in vesicles formation and traffic in the endothelium after envenoming. The study of eNOS activity revealed uncoupling (increasing in eNOS monomers) in acute periods after envenomation (1 h and 2 h) and progressive return followed by overexpression of dimers (re-coupling) at 72 h; those alterations were related to PNV action on calcium intracellular levels confirmed by Calmodulin increased expression and confirmed using Calbindin-D28 localization. Data revealed PNV interference on endothelial homeostasis and vascular function once affects the eNOS/NO system, an important vascular tonus controller. In astrocytes, caveolae are formed by Cav-3 and its overexpression is related to neurological disorders. PNV increased the basal levels of Cav-3 in GFAP-positive astrocytes (reactive astrogliosis) in the same periods as increased Cx43 (at 1, 5 e 24 h), during cytotoxic edema in astrocytes end-feet and alterations in axo-dendrites and axo-somatic synaptic contacts. Together, the results revealed that: (a) the BBB breakdown in transcellular route by PNV involves upregulation of caveolae endocytosis (b) the neurovascular unit components such as the endothelium, astrocytes and neurons are intimal involved (c) in the endothelium the effects are mediated by the eNOS/NO system and (d) SKF activates endocytic system and vesicular transport; (e) in the astrocytes, Cx43 and Cav-3 dynamic expression and their return to basal level in parallel with the absence of toxic signals in the animals (72 h) provides evidence that both protein interacts in astrocytes response. The data allows us to suggest that the neurotoxic peptides presented in Phoneutria nigriventer venom are in the center of the effects reported here / Mestrado / Biologia Tecidual / Mestra em Biologia Celular e Estrutural
52

Internalization and survival mechanisms of human ehrlichiosis agents ehrlichia chaffeensis and anaplasma phagocytophilum in host cells

Lin, Mingqun 06 August 2003 (has links)
No description available.
53

Efeitos celulares do óxido nítrico em aorta de ratos hipertensos renais / Cellular effects of the nitric oxide in rat aorta from renal hypertensive rats

Rodrigues, Gerson Jhonatan 22 February 2008 (has links)
O relaxamento vascular induzido pelo óxido nítrico (NO) está prejudicado em aorta de ratos hipertensos renais (2R-1C). A nossa hipótese é de que o menor efeito do NO na aorta de ratos 2R-1C pode estar relacionada com a maior degradação do NO e/ou modificação das cavéolas no músculo liso vascular (MLV), considerando que o NO pode ser degradado rapidamente e que as cavéolas parecem ser importantes para a redução da concentração citosólica de Ca2+ ([Ca2+]c). O presente trabalho teve por objetivo estudar as alterações nos mecanismos vasodilatadores do NO em aorta de ratos hipertensos renais 2R-1C. Inicialmente, estudamos a influência do estresse oxidativo sobre o efeito do NO liberado dos doadores [Ru(NH.NHq)(terpy)NO+]3+ (TERPY) e nitroprussiato de sódio (NPS) em aorta de ratos normotensos (2R) e 2R-1C. Verificamos que o relaxamento foi menor na aorta dos ratos 2R-1C do que de 2R para o TERPY e NPS e que nas células do MLV da aorta de 2R-1C o efeito do TERPY em reduzir a [Ca2+]c também foi menor. Porém, o tratamento das aortas de ratos 2R-1C com antioxidante normalizou o relaxamento para ambos doadores e o efeito do TERPY sobre a [Ca2+]c. A concentração basal de superóxido (O2-) nas aortas dos ratos 2R-1C é maior do que em 2R e foi reduzida pelos antioxidantes. A concentração de NO basal e liberada do TERPY é menor em aortas de ratos 2R-1C. Estudamos a influência das cavéolas sobre o efeito do TERPY e NPS, em aorta de ratos 2R e 2R-1C. Somente em aortas de ratos 2R, a desorganização das cavéolas com ciclodextrina inibiu o relaxamento dos doadores de NO utilizados e a redução da [Ca2+]c para o TERPY. O número de cavéolas é menor tanto nas células do MLV como nas células endoteliais da aorta de ratos 2R-1C. Estudamos ainda o efeito do TERPY sobre a pressão arterial de ratos 2R e 2R-1C acordados. O TERPY possui efeito hipotensor somente nos ratos 2R-1C e este efeito foi mais prolongado do que o efeito hipotensor com NPS. O NPS teve efeito hipotensor tanto em ratos 2R como 2R-1C, porém este efeito foi maior em 2R-1C. Os resultados obtidos neste estudo indicam que a elevada concentração de O2- e o menor número de cavéolas encontrados na aorta dos ratos 2R-1C, devem contribuir de forma importante para o menor relaxamento da aorta de ratos 2R-1C. / The vascular relaxation induced by nitric oxide (NO) donors is impaired in aortas from renal hypertensive rats (2K-1C). Our hypothesis was that the lower NO effect in aortas from 2K-1C rats could be related with the higher degradation of NO and/or caveolae changes in vascular smooth muscle cells (VSMCs), considering that NO can be rapidly degraded and caveolae seems to play important role in the reduction of cytosolic Ca2+ concentration [Ca2+]c. The present study aimed to investigate the alterations on aorta relaxation induced by NO in 2K-1C rat aorta. At first, we studied the influence of oxidative stress on the effect of NO released from the NO donors [Ru(NH.NHq)(terpy)NO+]3+ (TERPY) and sodium nitroprusside (SNP) in aortas from normotensive (2K) and 2K-1C rats. The relaxation induced by both NO donors was impaired in aortas from 2K-1C rats and the reduction on [Ca2+]c induced by TERPY was also impaired in 2K-1C VSMCs. However, in aortas treated with antioxidants the relaxation to both NO donors and the reduction on [Ca2+]c to TERPY were normalized. The basal concentration of superoxide (O2-) was greater in 2K-1C than in 2K, which was reduced by the antioxidants. The basal cytosolic NO concentration ([NO]c) and the NO released from TERPY were lower in aortas from 2K-1C rats. We studied the influence of caveolae on the effects of NO released from the NO donors, in aortas from 2K and 2K-1C rats. We verified that caveolae disassemble with ciclodextrin impaired the relaxation to NO donors and the reduction on [Ca2+]c to TERPY only in aortas from 2K rats. The number of caveolae is reduced in aortic VSMCs and in the endothelial cells from 2K-1C rats. We studied the effect of TERPY on arterial pressure from 2K and 2K-1C rats. TERPY reduced the arterial pressure only in 2K-1C rats, which effect was longer than that produced by SNP. The hypotensive effect of SNP was greater in 2K-1C than in 2K rats. Taken together, our results indicate that the higher concentration of O2- and the reduced number of caveolae on aortas from 2K-1C rats could contribute to impaired aorta relaxation of 2K-1C rats.
54

Endothelial TRPV4 dysfunction in a streptozotocin-diabetic Rat Model

Shamsaldeen, Yousif January 2016 (has links)
Diabetes mellitus is a complex disease characterised by chronic hyperglycaemia due to compromised insulin synthesis and secretion, or decreased tissue sensitivity to insulin, if not all three conditions. Endothelial dysfunction is a common complication in diabetes in which endothelium-dependent vasodilation is impaired. The aim of this study was to examine the involvement of TRPV4 in diabetes endothelial dysfunction. Male Charles River Wistar rats (350-450 g) were injected with 65mg/kg streptozotocin (STZ) intraperitoneally. STZ-injected rats were compared with naïve rats (not injected with STZ) or control rats (injected with 10ml/kg of 20mM citrate buffer, pH 4.0-4.5), if not both. Rats with blood glucose concentrations greater than 16mmol/L were considered to be diabetic. As the results revealed, STZ-diabetic rats showed significant endothelial dysfunction characterised by impaired muscarinic-induced vasodilation, as well as significant impairment in TRPV4-induced vasodilation in aortic rings and mesenteric arteries. Furthermore, STZ-diabetic primary aortic endothelial cells (ECs) showed a significant reduction in TRPV4-induced intracellular calcium ([Ca2+]i) elevation. TRPV4, endothelial nitric oxide synthase (eNOS), and caveolin-1 (CAV-1) were also significantly downregulated in STZ-diabetic primary aortic ECs and were later significantly restored by in vitro insulin treatment. Methylglyoxal (MGO) was significantly elevated in STZ-diabetic rat serum, and nondiabetic aortic rings incubated with MGO (100μM) for 12 hours showed significant endothelial dysfunction. Moreover, nondiabetic primary aortic ECs treated with MGO (100μM) for 5 days showed significant TRPV4 downregulation and significant suppression of 4-α-PDD-induced [Ca2+]i elevation, which was later restored by L-arginine (100μM) co-incubation. Incubating nondiabetic aortic rings with MGO (100μM) for 2 hours induced a spontaneous loss of noradrenaline-induced contractility persistence. Moreover, MGO induced significant [Ca2+]i elevation in Chinese hamster ovary cells expressing rat TRPM8 channels (rTRPM8), which was significantly inhibited by AMTB (1-5μM). Taken together, TRPV4, CAV-1, and eNOS can form a functional complex that is downregulated in STZ-diabetic aortic ECs and restored by insulin treatment. MGO elevation might furthermore contribute to diabetes endothelial dysfunction and TRPV4 downregulation. By contrast, MGO induced the loss of contractility persistence, possibly due to MGO's acting as a TRPM8 agonist.
55

Efeitos celulares do óxido nítrico em aorta de ratos hipertensos renais / Cellular effects of the nitric oxide in rat aorta from renal hypertensive rats

Gerson Jhonatan Rodrigues 22 February 2008 (has links)
O relaxamento vascular induzido pelo óxido nítrico (NO) está prejudicado em aorta de ratos hipertensos renais (2R-1C). A nossa hipótese é de que o menor efeito do NO na aorta de ratos 2R-1C pode estar relacionada com a maior degradação do NO e/ou modificação das cavéolas no músculo liso vascular (MLV), considerando que o NO pode ser degradado rapidamente e que as cavéolas parecem ser importantes para a redução da concentração citosólica de Ca2+ ([Ca2+]c). O presente trabalho teve por objetivo estudar as alterações nos mecanismos vasodilatadores do NO em aorta de ratos hipertensos renais 2R-1C. Inicialmente, estudamos a influência do estresse oxidativo sobre o efeito do NO liberado dos doadores [Ru(NH.NHq)(terpy)NO+]3+ (TERPY) e nitroprussiato de sódio (NPS) em aorta de ratos normotensos (2R) e 2R-1C. Verificamos que o relaxamento foi menor na aorta dos ratos 2R-1C do que de 2R para o TERPY e NPS e que nas células do MLV da aorta de 2R-1C o efeito do TERPY em reduzir a [Ca2+]c também foi menor. Porém, o tratamento das aortas de ratos 2R-1C com antioxidante normalizou o relaxamento para ambos doadores e o efeito do TERPY sobre a [Ca2+]c. A concentração basal de superóxido (O2-) nas aortas dos ratos 2R-1C é maior do que em 2R e foi reduzida pelos antioxidantes. A concentração de NO basal e liberada do TERPY é menor em aortas de ratos 2R-1C. Estudamos a influência das cavéolas sobre o efeito do TERPY e NPS, em aorta de ratos 2R e 2R-1C. Somente em aortas de ratos 2R, a desorganização das cavéolas com ciclodextrina inibiu o relaxamento dos doadores de NO utilizados e a redução da [Ca2+]c para o TERPY. O número de cavéolas é menor tanto nas células do MLV como nas células endoteliais da aorta de ratos 2R-1C. Estudamos ainda o efeito do TERPY sobre a pressão arterial de ratos 2R e 2R-1C acordados. O TERPY possui efeito hipotensor somente nos ratos 2R-1C e este efeito foi mais prolongado do que o efeito hipotensor com NPS. O NPS teve efeito hipotensor tanto em ratos 2R como 2R-1C, porém este efeito foi maior em 2R-1C. Os resultados obtidos neste estudo indicam que a elevada concentração de O2- e o menor número de cavéolas encontrados na aorta dos ratos 2R-1C, devem contribuir de forma importante para o menor relaxamento da aorta de ratos 2R-1C. / The vascular relaxation induced by nitric oxide (NO) donors is impaired in aortas from renal hypertensive rats (2K-1C). Our hypothesis was that the lower NO effect in aortas from 2K-1C rats could be related with the higher degradation of NO and/or caveolae changes in vascular smooth muscle cells (VSMCs), considering that NO can be rapidly degraded and caveolae seems to play important role in the reduction of cytosolic Ca2+ concentration [Ca2+]c. The present study aimed to investigate the alterations on aorta relaxation induced by NO in 2K-1C rat aorta. At first, we studied the influence of oxidative stress on the effect of NO released from the NO donors [Ru(NH.NHq)(terpy)NO+]3+ (TERPY) and sodium nitroprusside (SNP) in aortas from normotensive (2K) and 2K-1C rats. The relaxation induced by both NO donors was impaired in aortas from 2K-1C rats and the reduction on [Ca2+]c induced by TERPY was also impaired in 2K-1C VSMCs. However, in aortas treated with antioxidants the relaxation to both NO donors and the reduction on [Ca2+]c to TERPY were normalized. The basal concentration of superoxide (O2-) was greater in 2K-1C than in 2K, which was reduced by the antioxidants. The basal cytosolic NO concentration ([NO]c) and the NO released from TERPY were lower in aortas from 2K-1C rats. We studied the influence of caveolae on the effects of NO released from the NO donors, in aortas from 2K and 2K-1C rats. We verified that caveolae disassemble with ciclodextrin impaired the relaxation to NO donors and the reduction on [Ca2+]c to TERPY only in aortas from 2K rats. The number of caveolae is reduced in aortic VSMCs and in the endothelial cells from 2K-1C rats. We studied the effect of TERPY on arterial pressure from 2K and 2K-1C rats. TERPY reduced the arterial pressure only in 2K-1C rats, which effect was longer than that produced by SNP. The hypotensive effect of SNP was greater in 2K-1C than in 2K rats. Taken together, our results indicate that the higher concentration of O2- and the reduced number of caveolae on aortas from 2K-1C rats could contribute to impaired aorta relaxation of 2K-1C rats.
56

Role of Caveolae in Membrane Tension

Köster, Darius Vasco 30 September 2010 (has links)
Caveolae sind charakteristische Plasmamembraneinstülpungen, die in vielen Zelltypen vorkommen und deren biologische Funktion umstritten ist. Ihre besondere Form und ihre Häu gkeit in Zellen, die stets mechanischen Belastungen ausgesetzt sind, führten zu der Annahme, dass Caveolae die Plasmamembran vor mechanischen Belastungen schützen und als Membranreservoir dienen. Dies sollte mit dieser Dissertation experimentell geprüft werden. Zunächst wurde der Ein uss der Caveolae auf die Membranspannung von Zellen im Normalzustand untersucht. Dann wurden die Zellen mechanisch belastet. Mit Fluoreszensmikroskopie wurde das Verschwinden von Caveolae nach Strecken der Zellen oder nach einem hypo-osmotischen Schock beobachtet. Messungen der Membranspannung vor und unmittelbar nach dem hypo-osmotischem Schock zeigten, dass Caveolae einen Anstieg der Membranspannung verhindern, unabhängig von ATP und dem Cytoskelett. Die Erzeugung von Membranvesikel mit Caveolae erlaubte es, diesen Effekt der Caveolae in einem vereinfachten Membransystem zu beobachten. Schliesslich wurden Muskelzellen untersucht. Zellen, die genetisch bedingt weniger Caveolae haben und mit Muskelschwundkrankheiten in Verbingung stehen, waren mechanisch weniger belastbar als gesunde Zellen. Zusammenfassend wird mit dieser Dissertation die These bestärkt, dass Caveolae einem Anstieg der Membranspannungen entgegenwirken. Dass dies in Zellen und in Vesikeln unabhängig von Energie und Cytoskelett geschieht, lässt auf einen passiven, mechanisch getriebenen Prozess schliessen. Diese Erkenntnis trägt zum Verständnis der Rolle von Caveolae in Zellen bei und kann dem besseren Verständnis von Krankheiten bedingt durch Caveolin-Mutationen, wie z.B. Muskelschwundkrankheiten, dienen.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212 / Caveolae, the characteristic plasma membrane invaginations present in many cells, have been associated with numerous functions that still remain debated. Taking into account the particular abundance of caveolae in cells experiencing mechanical stress, it was proposed that caveolae constitute a membrane reservoir and bu er the membrane tension upon mechanical stress. The present work aimed to check this proposition experimentally. First, the in uence of caveolae on the membrane tension was studied on mouse lung endothelial cells in resting conditions using tether extraction with optically trapped beads. Second, experiments on cells upon acute mechanical stress showed that caveolae serve as a membrane reservoir bu ering surges in membrane tension in their immediate, ATP- and cytoskeleton-independent attening and disassembly. Third, caveolae incorporated in membrane vesicles also showed the tension bu ering. Finally, in a physiologically more relevant case, human muscle cells were studied, and it was shown that mutations with impaired caveolae which are described in muscular dystrophies render muscle cells less resistant to mechanical stress. In Summary the present work provides experimental evidence for the hypothesis that caveolae bu er the membrane tension upon mechanical stress. The fact that this was observed in cells and membrane vesicles in an ATP and cytoskeleton independent manner reveals a passive, mechanically driven process. This could be a leap forward in the comprehension of the role of caveolae in the cell, and in the understanding of genetic diseases like muscular dystrophies.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212 / Cavéoles sont des invaginations caractéristiques de la membrane plas- mique présents dans beaucoup de types cellulaires. Ils sont liées à plusieurs fonctions cellulaires, ce qui sont encore débattues. Prenant compte de l importance des cavéoles dans les cellules soumises au stress mécanique, les cavéoles sont proposées de constituer un réservoir membranaire et de tamponner la tension membranaire pendant des stresses mécaniques. Cette étude a eu le but de tester cette hypothèse expérimentalement. En premier, l in uence des cavéoles sur la tension membranaire au repos a été étudiée sur des cellules endothéliales du poumon de la souris. Puis, on a montré que les cavéoles tamponnent l augmentation de la tension membranaire après l application d un stress mécanique. En suite, la réalisation des vésicules membranaires contenant des cavéoles a permit de montrer leur rôle comme réservoir membranaire dans un système simpli é. Finalement, dans un contexte physiologiquement plus relevant, l étude des cellules musculaires a montrée que les mutations du cavéolin associées aux dystrophies musculaires rendent les cellules moins résistante aux stresses mécaniques. En conclusion, cette étude supporte l\''hypothèse que les cavéoles tamponnent la tension membranaire pendant des stresses mécaniques. Le fait que cela se passe dans les cellules et les vésicules indépendamment d ATP et du cytosquelette révèlent un processus passif et mécanique. Cela pourrait servir à une meilleure compréhension du rôle des cavéoles dans la cellule et les maladies génétiques comme les dystrophies musculaires.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212

Page generated in 0.0343 seconds