Spelling suggestions: "subject:"well cycle - c.regulation"" "subject:"well cycle - 042regulation""
21 |
Involvement of PKCzeta, GSK3beta, and MAPK in maintenance of the mitotic spindleJanuary 2012 (has links)
abstract: In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be associated with the mitotic spindle. In the study in chapter 2, we show the enrichment of active (phosphorylated) PKCæ at the centrosomal region of the spindle apparatus in metaphase stage of 3T3 cells. In order to understand whether the two kinases, PKC and GSK3â are associated with the mitotic spindle, first, the co-localization and close molecular proximity of PKC isoforms with GSK3â was studied in metaphase cells. Second, the involvement of inactive GSK3â in maintaining an intact mitotic spindle was shown. Third, this study showed that addition of a phospho-PKCæ specific inhibitor to cells can disrupt the mitotic spindle microtubules. The mitotic spindle at metaphase in mouse fibroblasts appears to be maintained by PKCæ acting through GSK3â. The MAPK pathway has been implicated in various functions related to cell cycle regulation. MAPKK (MEK) is part of this pathway and the extracellular regulated kinase (ERK) is its known downstream target. GSK3â and PKCæ also have been implicated in cell cycle regulation. In the study in chapter 3, we tested the effects of inhibiting MEK on the activities of ERK, GSK3â, PKCæ, and á-tubulin. Results from this study indicate that inhibition of MEK did not inhibit GSK3â and PKCæ enrichment at the centrosomes. However, the mitotic spindle showed a reduction in the pixel intensity of microtubules and also a reduction in the number of cells in each of the M-phase stages. A peptide activation inhibitor of ERK was also used. Our results indicated a decrease in mitotic spindle microtubules and an absence of cells in most of the M-phase stages. GSK3â and PKCæ enrichment were however not inhibited at the centrosomes. Taken together, the kinases GSK3â and PKCæ may not function as a part of the MAPK pathway to regulate the mitotic spindle. / Dissertation/Thesis / Ph.D. Molecular and Cellular Biology 2012
|
22 |
Regulation of Toxoplasma gondii bradyzoite differentiation in terminally differentiated skeletal muscle cellsRahman, Md Taibur 24 November 2017 (has links)
No description available.
|
23 |
Study of Pax3 and Pax7 functions during the development of the mouse embryo / Etude des fonctions des gènes Pax3 et Pax7 pendant le développement de l'embryonZalc, Antoine 26 September 2014 (has links)
Mon travail de thèse a porté sur l'étude des mécanismes contrôlant la progression du cycle cellulaire et le devenir des cellules progénitrices dans différents tissus. Sortie du cycle cellulaire et différenciation cellulaire pendant la formation du muscle du membre Nous avons montré que la sortie du cycle cellulaire, régulée par les inhibiteurs de kinases cycline-dépendantes (CDKI) et la différentiation musculaire contrôlée par les facteurs myogéniques (MRF), peuvent être découplées génétiquement pendant la formation du muscle. Nous avons identifié une séquence régulant l'expression de CDKI, spécifique au muscle, activée par les MRF dans les myoblastes et réprimée par la voie Notch dans les progéniteurs, permettant de contrôler la balance entre amplification des progéniteurs et établissement du muscle squelettique. Contrôle de la croissance des dérivés de crête neurale craniale Bien que Pax3 et Pax7 soient essentiels pour la formation de la crête neurale, leurs rôles durant le développement craniofacial restent inconnus. À l'aide de mutants murins pour Pax3/7 présentant des fentes faciales, nous avons montré que ces défauts sont liés à la surexpression de la voie de signalisation régulée par le récepteur Aryl hydrocarbon (AhR, récepteur à la dioxine). L'augmentation de l'activité d'AhR pousse les cellules mésenchymateuses faciales hors du cycle cellulaire alors que son inhibition restaure la prolifération de ces cellules, permettant la fermeture de la face des mutants Pax3/7 et démontrant qu'une interaction entre une voie de signalisation impliquée dans la réponse au stress environnemental et les gènes régulés par Pax3/7 est nécessaire pendant le développement craniofacia. / This thesis aims to decipher how Pax3 and Pax7 transcription factors control cell cycle progression of progenitor cells in different tissues.Cell cycle regulation of Pax3+ myogenic progenitors during limb muscle developmentWe showed that cell cycle exit, mediated by the cyclin-dependent kinases inhibitors (CDKI), and muscle differentiation, controlled by the myogenic regulatory factors (MRF), can be genetically uncoupled during development. We dissected a functional interplay between Notch signalling and both MRF and CDKI activities, for maintaining the cycling status of the progenitor cells. Further, we identified a CDKI, muscle-specific DNA regulatory element, activated by the MRF in myoblasts but repressed by Notch signalling in progenitor cells, controlling the equilibrium between amplification of the progenitor pool and the establishment of functional muscle.Control of Pax3+ neural crest derivatives growth, and maintenance during craniofacial developmentAlthough studies showed Pax3 and Pax7 to be essential during early neural crest development, their role during craniofacial formation is unknown. Using Pax3/7 mutant mice displaying facial clefts, we uncovered that these defects are associated with an up-regulation of the Aryl hydrocarbon Receptor (AhR, the receptor to dioxin) signalling pathway. In Pax3/7 mutants, increased AhR activity drives facial mesenchymal cells out of the cell cycle, while inhibiting AhR rescues the cycling status of these cells and the facial closure of Pax3/7 mutants. Our results identify a molecular link between an environmental stress response pathway and a Pax3/7 downstream gene regulatory network during normal craniofacial development.
|
24 |
In vitro effects of 2-methoxyestradiol, an endogenous estrogen, on MCF-12A and MCF-7 cell cycle progressionVan Zijl, Magdalena Catherina 24 July 2007 (has links)
2-Methoxyestradiol (2ME) is an endogenous estrogen metabolite with antiproliferative and antiangiogenic properties. 2ME also plays an active role in the induction of apoptosis, especially in cancerous cells. These properties have been confirmed by various in vitro and in vivo studies and render 2ME a potential antitumor agent. The mechanism of action of 2ME, however, is not yet fully elucidated and it is believed that multiple mechanisms are involved that may be dependent on cell type. The aim of this study was to investigate the differential effects of 2ME on cell growth, morphology and spindle formation in the non-tumorigenic MCF-12A breast cell line and the tumorigenic MCF-7 breast cell line. In dose-dependent studies, cell growth was determined spectrophotometrically. Light microscopy was used to investigate the morphological changes induced by 2ME and its effect on spindle formation was investigated by means of indirect immunofluorescence. The estrogen receptor status of the MCF-12A cells was confirmed with immunocytochemistry. In order to investigate the effect of 2ME on the length of the cell cycle, cells were blocked in early S-phase with hydroxyurea, then allowed to continue through the cell cycle and mitotic indices determined at regular time intervals. Checkpoint kinase and Cdc2 kinase assays were used to determine the effect of 2ME on relevant cell cycle kinases. Although 2ME inhibited cell growth in both cell lines, the MCF-7 cells were inhibited from much lower concentrations and growth inhibition was more pronounced than in the MCF-12A cells. Treated MCF-7 cells showed abnormal metaphase cells, membrane blebbing, apoptotic cells and disrupted spindle formation. These observations were either absent, or not as prominent in the MCF-12A cells. Therefore, differential mechanism(s) of growth inhibition are evident between the normal and tumorigenic cells. Although the two cell lines differ in their estrogen receptor status, this could not explain the differential effects, for 2ME has a very low affinity for the estrogen receptor. 2ME had no effect on the length of the cell cycle, but blocked MCF-7 cells in mitosis. There were no significant alterations in the phosphorylation status of Cdc25C after 2ME treatment. However, Cdc2 activity was increased to a greater extend in the MCF-7 cells than in the MCF-12A cells. Therefore, it is suggested that exposure to 2ME disrupts mitotic spindle formation and enhances Cdc2 kinase activity, leading to persistence of the spindle checkpoint and thus prolonged metaphase arrest, which may result in the induction of apoptosis. The tumorigenic MCF-7 cells are especially sensitive to 2ME treatment compared to the normal MCF-12A cells. 2ME shows potential for the treatment of breast cancer. Selecting the concentration of 2ME that has maximum inhibitory effect on tumorigenic, but minimal effect on normal cells is crucial in its possible application as antitumor agent. Furthermore, research concerning the differential action mechanisms of 2ME is essential to create a better understanding regarding the treatment of cancer and may possibly contribute to the development and/or improvement of novel chemotherapeutic agents. / Dissertation (MSc (Physiology))--University of Pretoria, 2008. / Physiology / unrestricted
|
25 |
The CHR site: definition and genome-wide identification of a cell cycle transcriptional elementMüller, Gerd A., Wintsche, Axel, Stangner, Konstanze, Prohaska, Sonja J., Stadler, Peter F., Engeland, Kurt January 2014 (has links)
The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB.
|
26 |
TRIP13 AAA-ATPase Promotes Spindle Assembly Checkpoint Activation through Coordinating with MAD1 at Unattached KinetochoresArnst, Christopher Edward 04 September 2019 (has links)
No description available.
|
27 |
Effects of Altering Cell Proliferation on Hematopoietic Stem and Progenitor Cell FunctionRohrabaugh, Sara L. 14 June 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cell cycle checkpoints guarantee movement through the cell cycle in an appropriate manner. The spindle assembly checkpoint (SAC) ensures the proper segregation of chromosomes into daughter cells during mitosis. Mitotic arrest deficiency 2 (Mad2), a member of the mitotic checkpoint proteins, appears to be crucial for generating the wait anaphase signal to prevent onset of anaphase. We first studied the SAC in hematopoietic stem cells (HSC) to ensure that it was functional. Our previous studies found that prolonged SAC activation was uncoupled from apoptosis initiation in mouse and human embryonic stem cells (ESC). We found that upon treatment with a microtubule-destabilizing agent, HSC arrested in M-phase and subsequently initiated apoptosis. Thus unlike ESC, HSC exhibit coupling of prolonged SAC activation with apoptosis. We studied the effects of Mad2+/- on in vivo recovery of bone marrow HPC from cytotoxic effects and also effects of cytostatic agents on HPC growth in vitro using Mad2-haploinsufficient (Mad2+/-) mice. We found that Mad2+/- HPCs were protected from the cytotoxic effects of cytarabine (Ara-C), a cycle specific agent, consistent with Mad2+/- HPCs being in a slow or non-cycling state. Mad2 haploinsufficiency did not affect recovery of functional HPC after treatment with cyclophosphamide or high sub-lethal dose irradiation, both non-cycle specific agents. There were no differences in immunophenotype defined HSCs in Mad2+/- and Mad2+/+ mice, data confirmed by functional HSC competitive repopulation assays. To better understand the role of Mad2 in HPC, E3330, a cytostatic agent, was used to assess the redox function of Ape1/Ref-1, and colony formation in vitro was examined under normoxic and lowered O2 tension. Mad2+/- HPCs were less responsive to E3330 than Mad2+/+ HPCs, and E3330 was more effective under lowered O2 tension. Mad2+/- HPCs did not exhibit enhanced growth in lowered oxygen tension, in contrast to Mad2+/+ HPCs. Our studies have unexpectedly found that Mad2 haploinsufficiency is protective from the cytotoxic effects of a cycle specific DNA synthesis agent in vivo, and Ape1/Ref-1 inhibitor in vitro.
|
28 |
Oral cancer with special reference to virus detection and quantitative gene expressionShojaeian Jalouli, Miranda January 2016 (has links)
Background. Head and neck cancers (HNC) are among the most common malignancies worldwide, and about 90–92% of oral neoplasias are oral squamous cell carcinomas (OSCC). Alcohol and tobacco consumption have been recognized as the main risk factors for OSCC development. Oncogenic viruses, such as human papillomavirus (HPV) or Epstein-Barr virus (EBV), as well as genetic alterations may also contribute to tumour formation. Aims. To study the prevalence of HPV, EBV, Herpes simplex type-1 (HSV-1), and HPV-16 and their integration status as well as the molecular mechanisms that can serve as a basis for the development of OSCC. Results. In Paper I we reported a statistically significant increase in the prevalence of HPV-16 in oral epithelial dysplasia (OED) and OSCC samples compared to controls. A statistically significant increase was also seen in integrated HPV-16 compared to episomal viral forms when comparing OED and OSCC samples. Paper II reported the detection of HSV-1 in 54% of healthy samples, in 36% of oral leukoplakia samples, and 52% of OSCC samples. However, these differences were not statistically significant. In Paper III we reported a statistically significant increase in the detection of HPV-positive samples when comparing nested polymerase chain reaction (PCR) with single-PCR results in OSCC and fresh oral mucosa. Paper IV reported that the highest prevalence of HPV (65%) was seen in Sudan, while an HSV-1 prevalence of 55% and an EBV prevalence of 80% were seen in the UK. Finally, Paper V reported that the mRNA levels of Bcl-2, keratin 1, keratin 13, and p53 were significantly lower and that the level of survivin was significantly higher in the OSCC samples of the toombak users than in their paired control samples. Significant downregulation in keratin 1 and keratin 13 expression levels was found in the OSCC samples of the non-toombak users relative to their normal control samples. Conclusion. HPV-16 integration was increased in oral epithelial dysplasia and OSCC compared to normal oral mucosa. Nested PCR is a more accurate method of establishing HPV prevalence in samples containing low copy numbers of HPV DNA. HPV and EBV may be a risk factor in OSCC development. Our findings confirmed the role of survivin in OSCC carcinogenesis and survivin might be interesting as a biomarker to be monitored. The results presented here provide both clinical and biological insights that will bring us closer to the goal of managing this disease and improving treatment and outcomes for future patients.
|
29 |
The role of the p300/CBP complex components in the regulation of apoptosis under hypoxiaXenaki, Georgia January 2008 (has links)
Posttranslational modifications are of great importance in the mediation of transcriptional effects, necessary for signalling in cancer. A characteristic example of such modifications is acetylation of the p53 tumour suppressor, a transcription factor involved in several crucial cellular functions including cell-cycle arrest and apoptosis. p53 is stabilised under hypoxic and DNA damaging-conditions. However, only in the latter scenario is p53 fully capable of inducing the expression of its proapoptotic targets through acetylation. The hypoxia inducible factor 1 (HIF-1) transcription factor is stabilised at low oxygen levels to mediate a cellular adaptive response under these conditions, promoting cell survival. As these two opposing transcription factors share a common transcriptional regulator, p300/CBP, this study focused on deciphering the p300/CBP complex components under differential stress to determine its composition required for cellular responses elicited in response to DNA damage or hypoxia, in an effort to investigate a possible link between differential posttranslational modifications and the resulting cell fate. Hence, the aim of this study was to investigate the roles of p300/CBP components in dictating transcriptional regulation of both HIF-1 and p53 in hypoxic conditions. To carry out this study, the proapoptotic BID gene was the system used, as its promoter contains a p53 response element and a HIF-1 response element (HRE). The p300/CBP associated factors PCAF and Strap were appointed as potent candidates for posttranslational modifications under differential conditions, as they are stress-responsive cofactors. Under DNA damage, PCAF acetylates p53 at K320 and Strap augments p300 binding to p53, both of which amplify the p53 response. Evidence from this study demonstrates that under hypoxia-mimicking conditions PCAF-mediated p53 acetylation at K320 is reduced to a greater extent compared to p300/CBP acetylation at K382. The limited amounts of acetylated p53 at K320 are preferentially recruited to the promoter of the cell cycle arrest p21WAF-1/CIP-1 gene that appears to be unaffected by hypoxia, but fail to be recruited to the BID promoter, rendering p53 incapable of upregulating proapoptotic BID in hypoxic conditions. In addition, under the same conditions, PCAF was found to acetylate, and direct HIF-1 to a particular subset of its targets, leading to alterations in the net physiological effect. Moreover, the intrinsic acetyl transferase activity of PCAF was shown to increase the stability of HIF-1. An additional role was attributed to PCAF in relation to apoptosis, albeit from another angle. BID protein translocation to the cytoplasm in hypoxic conditions was facilitated by ectopically expressed PCAF.Strap was found to be preferentially recruited to the HRE of the BID promoter in hypoxic conditions, and to exert a transrepression effect that appeared to be p53-dependent. Strap also interacted with specific PCAF isoforms depending on the type of cellular stress. Contrary to PCAF, ectopically expressed Strap did not have any effect on BID subcellular distribution. This study has provided additional insight in the mechanisms by which cofactors are involved in cell fate, either by affecting activity and stability of HIF-1 and p53, or having a direct effect on Bcl-2 member subcellular distribution.
|
30 |
Μελέτη του ρόλου της πρωτεϊνης BM88 στον καθορισμό της νευρωνικής ταυτότητας των κυττάρων / Study of the role of BM8 protein in the comitment of cels to the neuronal identityΚουτμάνη, Γιασεμή 01 December 2008 (has links)
Η πρωτεΐνη ΒΜ88 είναι νευροειδική πρωτεΐνη με ευρεία κατανομή σε κύτταρα του κεντρικού και περιφερικού νευρικού συστήματος των θηλαστικών. O βιοχημικός χαρακτηρισμός του μορίου έδειξε ότι πρόκειται για διαμεμβρανική πρωτεΐνη που εντοπίζεται κυρίως στις μεμβράνες ενδοκυττάριων οργανιδίων (μιτοχόνδρια, ενδοπλασματικό δίκτυο) ενώ το μεγαλύτερο τμήμα του μορίου της προσανατολίζεται προς το κυτταρόπλασμα. Στο ενήλικο κεντρικό νευρικό σύστημα η πρωτεΐνη ΒΜ88 εκφράζεται σε νευρώνες ενώ δεν ανιχνεύεται σε γλοιοκύτταρα. Αναπτυξιακά, η έκφραση της πρωτεΐνης ΒΜ88 ανιχνεύεται κατά την έναρξη της νευρογένεσης στον εγκέφαλο του αρουραίου ενώ τα επίπεδα της έκφρασή της αυξάνονται µε την ηλικία και παραµένουν υψηλά στο ενήλικο ζώο. Λειτουργικά πειράματα in vitro υπερέκφρασης της πρωτεΐνης ΒΜ88 συσχετίζουν την πρωτεΐνη ΒΜ88 με την έξοδο των κυττάρων από τον κυτταρικό κύκλο και την έναρξη της διαδικασίας διαφοροποίησής τους προς νευρωνικό φαινότυπο. Τα παραπάνω δεδομένα μας ώθησαν να μελετήσουμε την έκφραση της πρωτεΐνης ΒΜ88 κατά τη διαδικασία της νευρογένεσης και της διαφοροποίησης των νευρώνων in vivo, έτσι ώστε να διερευνήσουμε το ρόλο της κατά την ανάπτυξη του εγκεφάλου. Για το σκοπό αυτό επιλέξαμε ως σύστημα μελέτης τον αναπτυσσόμενο φλοιό του τελεγκεφάλου των τρωκτικών.
Αρχικά χαρτογραφήθηκε η έκφραση της πρωτεΐνης ΒΜ88 στο φλοιό του αναπτυσσόμενου τελεγκεφάλου κατά την εμβρυϊκή ηλικία Ε14-Ε18 και πραγματοποιήθηκαν πειράματα διπλού ανοσοφθορισμού με αντισώματα έναντι της πρωτεΐνης ΒΜ88 και έναντι μαρτύρων του κυτταρικού πολλαπλασιασμού όπως είναι η κυκλίνη D1 (μάρτυρας της φάσης G2/M του κυτταρικού κύκλου) και το ανάλογο της θυμιδίνης BrdU (που ενσωματώνεται κατά τη φάση της αντιγραφής του DNA - φάση S του κυτταρικού κύκλου). Τα αποτελέσματα αυτών των πειραμάτων έδειξαν ότι η πρωτεΐνη ΒΜ88 εκφράζεται τόσο στους διαφοροποιημένους νευρώνες, όσο και σε ενεργά πολλαπλασιαζόμενα προγονικά κύτταρα του αναπτυσσόμενου φλοιού του αρουραίου και του ποντικού.
Κατόπιν, διερευνήσαμε αν η πρωτεΐνη ΒΜ88 εκφράζεται κατά την περίοδο της νευρογένεσης ειδικά, σε προγονικά κύτταρα της γενεαλογίας των νευρώνων ή αν εκφράζεται και σε πρόδρομα κύτταρα της γλοιϊκής γενεαλογίας του τελεγκεφάλου. Για το σκοπό αυτό πραγματοποιήθηκαν διπλές και τριπλές ανοσοϊστοχημικές χρώσεις με αντισώματα έναντι της πρωτεΐνης ΒΜ88 και έναντι νευρωνικών ή γλοιΐκών μαρτύρων, σε συνδυασμό με αντισώματα έναντι μαρτύρων κυτταρικού πολλαπλασιασμού. Παρατηρήθηκε ότι η πρωτεΐνη ΒΜ88 εκφράζεται αποκλειστικά και μόνο σε κύτταρα της νευρωνικής γενεαλογίας και όχι σε πολλαπλασιαζόμενα ή διαφοροποιημένα κύτταρα της γλοιϊκής γενεαλογίας. Τα παραπάνω αποτελέσματα επιβεβαιώθηκαν από το γεγονός ότι η έκφραση της πρωτεΐνης ΒΜ88 προσδιορίστηκε και σε νευροεπιθηλιακά κύτταρα του τύπου «ακτινωτής γλοίας» που σύμφωνα με την τρέχουσα αντίληψη, αποτελούν την πλειοψηφία του πληθυσμού των πρόδρομων νευρογενετικών κυττάρων του φλοιού κατά την εμβρυϊκή ηλικία Ε14-Ε18. Αργότερα μόνο, τα κύτταρα αυτά θα αποτελέσουν προδρόμους της γλοιϊκής γενεαλογίας, και συγκεκριμένα μετά τη 18η εμβρυϊκή ημέρα και κατά τις πρώτες ημέρες μετά τη γέννηση.
Στη συνέχεια πραγματοποιήθηκαν συνδυαστικά πειράματα σήμανσης των πρόδρομων κυττάρων του εγκεφάλου με δύο διαφορετικούς μάρτυρες της φάσης S του κυτταρικού κύκλου, με τα οποία έγινε εφικτή η παρακολούθηση in vivo, και για το διάστημα 12 και 24 ωρών, του πολλαπλασιασμού, της μετανάστευσης και της διαφοροποίησης μιας ομάδας πρόδρομων νευρικών κυττάρων. Τα πειράματα αυτά οδήγησαν στο συμπέρασμα ότι η έκφραση της πρωτεΐνης ΒΜ88 σχετίζεται με τις ασύμμετρες κυτταρικές διαιρέσεις, η εμφάνιση των οποίων σηματοδοτεί την έναρξη της νευρογένεσης στο φλοιό και την εμφάνιση των πρώτων μεταμιτωτικών νευρώνων. Έτσι, φαίνεται ότι η έκφραση της πρωτεΐνης ΒΜ88 στα πρόδρομα νευρογενετικά κύτταρα προκαλεί την έξοδό τους από τον κυτταρικό κύκλο.
Η έκφραση της πρωτεΐνης ΒΜ88 μελετήθηκε και στον εγκέφαλο του ενήλικου αρουραίου όπου εντοπίστηκε, εκτός από τους ώριμους νευρώνες, και στα πρόδρομα κύτταρα του πρόσθιου μεταναστευτικού τόξου (RMS) όπου λαμβάνει χώρα η δευτερογενής νευρογένεση. Το αποτέλεσμα αυτό έρχεται σε συμφωνία με τις προηγούμενες παρατηρήσεις μας και συνδέουν επιπλέον την έκφραση της πρωτεΐνης ΒΜ88 με τη διαδικασία της νευρογένεσης στον ενήλικο εγκέφαλο.
Τέλος, μελετήσαμε τόσο την έκφραση της πρωτεΐνης ΒΜ88 όσο και τα επίπεδα μεταγραφής του γονιδίου ΒΜ88 στον αναπτυσσόμενο εγκεφαλικό φλοιό ποντικών που φέρουν τη μετάλλαξη Small eye (ποντίκια Sey/Sey). Στα ποντίκια αυτά δεν είναι λειτουργικό το γονίδιο Pax6 που είναι υπεύθυνο για την επαγωγή της νευρογένεσης στο ραχιαίο μέρος του τελεγκεφάλου. Έτσι, ο αριθμός των νευρώνων που παράγονται στο φλοιό αυτών των μεταλλαγμένων ποντικών είναι ελαττωμένος στο μισό από αυτόν που συναντάμε στα ποντίκια φυσικού τύπου. Όπως αναμενόταν, παρατηρήθηκε ότι τόσο η έκφραση της πρωτεΐνης ΒΜ88 όσο και τα επίπεδα μεταγραφής του γονιδίου ΒΜ88 είναι μειωμένα στα ποντίκια Sey/Sey.
Συμπερασματικά, τα αποτελέσματα της εργασίας μας έδειξαν ότι η πρωτεΐνη ΒΜ88 χαρακτηρίζει τη γενεαλογία των νευρώνων από τα πρόδρομα εμβρυϊκά κύτταρα μέχρι τους ώριμους νευρώνες και επομένως αποτελεί ένα νέο μάρτυρα της νευρωνικής γενεαλογίας. Επιπλέον, δείξαμε ότι η πρωτεΐνη ΒΜ88 συγκεντρώνει τις απαραίτητες ιδιότητες που χαρακτηρίζουν ένα «νευρογενετικό παράγοντα». Συγκεκριμένα: α) εκφράζεται τόσο στους διαφοροποιημένους νευρώνες όσο και σε ενεργά πολλαπλασιαζόμενα κύτταρα της νευρωνικής γενεαλογίας, β) δεν εκφράζεται σε πρόδρομα κύτταρα της γλοιϊκής γενεαλογίας, γ) εκφράζεται σε πρόδρομα κύτταρα νευρώνων κατά τη διάρκεια της νευρογένεσης στο ενήλικο άτομο και τέλος δ) η έκφρασή της μειώνεται σε ζώα που φέρουν μεταλλάξεις οι οποίες έχουν ως αποτέλεσμα την εμφάνιση ελαττωματικής νευρογένεσης.
Η κατανομή της πρωτεΐνης ΒΜ88 κατά την ανάπτυξη του εγκεφάλου καθώς και ο εντοπισμός της σε βλαστικά κύτταρα του ενήλικου εγκεφάλου, η συσχέτιση της έκφρασης του μορίου με τις ασύμμετρες νευρογενετικές κυτταρικές διαιρέσεις καθώς και η χαρακτηριστική αύξηση των επιπέδων έκφρασης της πρωτεΐνης ΒΜ88 κατά τη μετάβαση των προγονικών κυττάρων σε διαφοροποιημένους νευρώνες, όλα συνηγορούν για τη συμμετοχή του μορίου στις διαδικασίες της εξόδου από τον κυτταρικό κύκλο και τη διαφοροποίηση των νευρώνων in vivo. Οι παρατηρήσεις αυτές, όχι μόνον είναι συμβατές με προηγούμενα πειραματικά δεδομένα όσον αφορά τον προσδιορισμό του ρόλου της πρωτεΐνης σε in vitro βιολογικά συστήματα, αλλά δημιουργεί ενδιαφέρουσες προοπτικές για την αξιοποίηση της πρωτεΐνης ΒΜ88 σε θεραπευτικές προσεγγίσεις για την αντιμετώπιση νευροεκφυλιστικών ασθενειών ή/και τραυματισμών του εγκεφάλου. / BM88 is a neuron-specific protein widely expressed in the cells of the mammalian central and peripheral nervous system. Its biochemical characterization revealed that is an integral membrane protein, located at the membranes of intra-cellular organelles (mitochondria, endoplasmic reticulum) with the bulk of the protein facing towards the cytoplasm. In the adult central nervous system BM88 is expressed in neurons but it is not detected in glial cells. During development, BM8 is initially expressed at the onset of neurogenesis in the rat brain, its levels rise along age and remain high in the adult. In vitro experiments of BM88 protein over-expression suggest that BM88 is implicated in cell cycle exit and the initiation of differentiation into a neuronal phenotype. These findings lead us to study the expression of BM88 during neurogenesis and neuronal differentiation in vivo in purpose to investigate its role in brain development. For this reason, we have chosen as a model of study the developing cortex of rodent telencephalon.
Initially, we investigated the distribution of BM88 protein in the developing cortex. To this end, we performed double-labeling experiments in sections from the developing rat brain at embryonic days E14 and E18 using antibodies to BM88 and markers of the cell cycle such as cyclin D1 (G2/M phase marker) and BrdU, a thymidine analogue that is incorporated during DNA replication (S phase marker). The findings from these experiments revealed that BM88 protein is expressed in the differentiated neurons as well as in actively proliferating progenitor cells of the developing cortex of rat and mouse.
We next sought to investigate whether BM88 is expressed during neurogenesis specifically in the progenitor cells of the neuronal lineage or in the progenitor cells of the glial lineage of the telencephalon as well. For this reason we performed double and triple-labeling experiments with antibodies to BM88 and to markers of the neuronal or glial lineages, in combination with markers of the cell cycle. We observed that BM88 protein is expressed exclusively in the neuronal progenitors and never in the proliferating or differentiated cells of the glial lineage. The above results were supported also by the fact that BM88 protein was detected in neuroepithelial “radial glial” cells that are cells recently reported to be the majority of neuronal progenitors of the cortex during the embryonic days E14-E18. These cells will turn into glial progenitors only after the embryonic day E18 and during early postnatal days.
Moreover, we developed an experimental protocol that allowed us to mark the progenitor cells of the brain with two different markers of the S phase of the cell cycle. Thus, we could observe in vivo, during a period of 12 and 24 hours, the migration and differentiation of a group of neural progenitor cells. The results from this experiment lead us to the conclusion that the expression of BM8 protein is associated with the asymmetric cell divisions that mark the onset of neurogenesis in the cortex and the appearance of the first post-mitotic neurons. Thus, it appears that the expression of BM88 protein in the neuronal progenitor cells causes their exit from the cell cycle.
BM88 protein expression was also detected in the adult rat brain, not only in the mature neurons but also in the precursor cells of the rostral migratory stream (RMS), where the secondary neurogenesis occurs. This result is in accordance with our previous observations and support additionally that there is a correlation between BM88 expression and the process of neurogenesis in the adult brain.
Finally, we investigated the expression of BM88 protein as well as the transcriptional levels of BM88 gene in the developing cortex of Small eye mutant mice (Sey/Sey mice). These mice lack the functional Pax6 gene that is responsible for the induction of neurogenesis in the dorsal telencephalon. Thus, the number of neurons that are produced in the cortex of the mutant mice is reduced by half in comparison to that of the wild type mice. As expected we observed reducer levels of expression both of BM88 protein and BM88 transcripts in the Sey/Sey mice.
To conclude, the results of our study demonstrate that BM88 protein marks the lineage of neurons, all along from the stage of embryonic precursor cells to the stage of mature neurons, and for this reason is a new marker of the neuronal lineage. Furthermore, we showed that BM88 protei has all the characteristics that can identify a molecule as a “neurogenic factor”. More specifically: a) it is expressed both in differentiated neurons and in actively proliferating cells of the neuronal lineage, b) it is absent in the precursors of the glial lineage, c) it is present in the adult neuronal precursors, and finally d its expression is reduced in mutants with neurogenic defects.
The expression pattern of BM88 protein during brain development, its presence in stem cells in the adult brain, its association with the asymmetric divisions of neurons as well as the characteristic high levels of BM88 protein expression during the neuronal transition from the progenitor stage to the differentiated stage, all together coincides to the implication of BM88 in the exit from the cell cycle and in the differentiation of neurons in vivo. These observations not only agree with previous experimental data, but also create new perspectives for the use of BM88 protein in therapeutic approaches in order to control the neurodegenerative diseases or/and brain damages.
|
Page generated in 0.0873 seconds