• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 6
  • 5
  • 4
  • 4
  • Tagged with
  • 90
  • 90
  • 22
  • 16
  • 16
  • 16
  • 16
  • 14
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Quantitative Analyses of Cell Aggregation Behavior Using Cell Trajectory Data / 軌跡データをもちいた細胞凝集挙動の解析法

Otaka, Akihisa 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18267号 / 工博第3859号 / 新制||工||1592(附属図書館) / 31125 / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 富田 直秀, 教授 安達 泰治, 教授 井手 亜里 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
42

The Effects of the Endothelial Surface Layer on Red Blood Cell Dynamics in Microvessel Bifurcations

Carlson Bernard Triebold (11198889) 28 July 2021 (has links)
<div>Red blood cells (RBCs) make up 40-45% of blood and play an important role in oxygen transport. That transport depends on the RBC distribution throughout the body, which is highly heterogeneous. That distribution, in turn, depends on how RBCs are distributed or partitioned at diverging vessel bifurcations where one vessel flows into two. Several studies have used mathematical modeling to consider RBC partitioning at such bifurcations in order to produce useful insights. However, these studies assume that the vessel wall is a flat impenetrable homogeneous surface. While this is a good first approximation, especially for larger vessels, the vessel wall is typically coated by a flexible, porous endothelial surface layer (ESL) that is 0.5-1 microns thick. To better understand the possible effects of this layer on RBC partitioning, a diverging capillary bifurcation is analyzed using a flexible, two-dimensional RBC model. The model is also used to investigate RBC deformation and penetration of the ESL region when ESL properties are varied. The RBC is represented using interconnected viscoelastic elements. Stokes flow equations (viscous flow) model the surrounding fluid. The flow in the ESL is modeled using the Brinkman approximation for porous media with a corresponding hydraulic resistivity. The resistance of the ESL to compression is modeled using an osmotic pressure difference. The study includes isolated cells that pass through the bifurcation one at a time with no cell-cell interactions and two cells that pass through the bifurcation at the same time and interact with each other. A range of physiologically relevant hydraulic resistivities and osmotic pressure differences are explored.</div><div><br></div><div>For isolated cell simulations, decreasing hydraulic resistivity and/or decreasing osmotic pressure difference produced four behaviors: 1) RBC distribution nonuniformity increased; 2) RBC deformation decreased; 3) RBCs slowed down slightly; and 4) RBCs penetrated more deeply into the ESL. The presence of an altered flow profile and the ESL's resistance to penetration were primary factors responsible for these behaviors. In certain scenarios, ESL penetration was deep enough to present a possibility of cell adhesion, as can occur in pathological situations.</div><div><br></div><div>For paired cell simulations, more significant and complex changes were observed. Three types of effects that alter partitioning as hydraulic resistivity is changed are identified. Decreasing hydraulic resistivity in the ESL produced lower RBC deformation. Including cell-cell interactions tended to increase deformation sharply compared to isolated cell scenarios. ESL penetration generally decreased for lower hydraulic resistivities except in scenarios with significant cell-cell interactions. This was primarily due to changes in flow profiles induced by the altered hydraulic resistivity levels.</div>
43

The transmembrane protein fibrocystin/polyductin regulates cell mechanics and cell motility

Puder, Stefanie, Fischer, Tony, Mierke, Claudia Tanja 26 April 2023 (has links)
Polycystic kidney disease is a disorder that leads to fluid filled cysts that replace normal renal tubes. During the process of cellular development and in the progression of the diseases, fibrocystin can lead to impaired organ formation and even cause organ defects. Besides cellular polarity, mechanical properties play major roles in providing the optimal apical-basal or anterior–posterior symmetry within epithelial cells. A breakdown of the cell symmetry that is usually associated with mechanical property changes and it is known to be essential in many biological processes such as cell migration, polarity and pattern formation especially during development and diseases such as the autosomal recessive cystic kidney disease. Since the breakdown of the cell symmetry can be evoked by several proteins including fibrocystin, we hypothesized that cell mechanics are altered by fibrocystin. However, the effect of fibrocystin on cell migration and cellular mechanical properties is still unclear. In order to explore the function of fibrocystin on cell migration and mechanics, we analyzed fibrocystin knockdown epithelial cells in comparison to fibrocystin control cells. We found that invasiveness of fibrocystin knockdown cells into dense 3D matrices was increased and more efficient compared to control cells. Using optical cell stretching and atomic force microscopy, fibrocystin knockdown cells were more deformable and exhibited weaker cell–matrix as well as cell–cell adhesion forces, respectively. In summary, these findings show that fibrocystin knockdown cells displayed increased 3D matrix invasion through providing increased cellular deformability, decreased cell–matrix and reduced cell–cell adhesion forces
44

Jamming transitions in cancer

Oswald, Linda, Grosser, Steffen, Smith, David M., Käs, Josef A. 25 April 2023 (has links)
The traditional picture of tissues, where they are treated as liquids defined by properties such as surface tension or viscosity has been redefined during the last few decades by the more fundamental question: under which conditions do tissues display liquid-like or solid-like behaviour? As a result, basic concepts arising from the treatment of tissues as solid matter, such as cellular jamming and glassy tissues, have shifted into the current focus of biophysical research. Here, we review recent works examining the phase states of tissue with an emphasis on jamming transitions in cancer. When metastasis occurs, cells gain the ability to leave the primary tumour and infiltrate other parts of the body. Recent studies have shown that a linkage between an unjamming transition and tumour progression indeed exists, which could be of importance when designing surgery and treatment approaches for cancer patients
45

Thermorheology of living cells: impact of temperature variations on cell mechanics

Kießling, Tobias R., Stange, Roland, Käs, Josef A., Fritsch, Anatol W. 16 August 2022 (has links)
Upon temperature changes, we observe a systematic shift of creep compliance curves J (t) for single living breast epithelial cells. We use a dual-beam laser trap (optical stretcher) to induce temperature jumps within milliseconds, while simultaneously measuring the mechanical response of whole cells to optical force. The cellular mechanical response was found to differ between sudden temperature changes compared to slow, long-term changes implying adaptation of cytoskeletal structure. Interpreting optically induced cell deformation as a thermorheological experiment allows us to consistently explain data on the basis of time–temperature superposition, well known from classical polymer physics. Measured time shift factors give access to the activation energy of the viscous flow of MCF-10A breast cells, which was determined to be 80 kJ mol−1. The presented measurements highlight the fundamental role that temperature plays for the deformability of cellular matter. We propose thermorheology as a powerful concept to assess the inherent material properties of living cells and to investigate cell regulatory responses upon environmental changes.
46

Cell-sorting in grid-based time-continuous cell population models

Olofsson, Joel January 2022 (has links)
This thesis extends an existing cell population modelling framework to investigate two different hypotheses for what drives the phenomenon of cell sorting, which is the spontaneous self-reorganization of cell populations. This behaviour cause cells to find their way back into their original configuration after they have been scrambled. Original tissue function may also be regained. The modelling framework is called discrete Laplacian cell mechanics (DLCM), and models cell movement on a lattice as a result of pressure differences. The first hypothesis suggests that cells exhibit type-specific adhesion properties which cause cells of the same type to adhere more to each other than to cells of a different kind. The other, more recent, hypothesis explains cell sorting behaviour as a consequence of interfacial tension, where cells of different types exhibit larger tension between them compared to cells of the same type. Adhesion is implemented as a passive force between cells of the same type, which counteract the pressure-driven events, while interfacial tension is implemented as pressure sources arising due to contact with cells of a different type. This thesis investigates whether these additions on the scale of individual cells can be sufficient to induce sorting behaviour on the cell population scale. Subsequently the suitability of implementing these effects in the DLCM framework can be evaluated. Starting from a scrambled cell configuration of two types, the results show that differential adhesion can result in the cell population sorting into smaller clusters, with the addition of Brownian motion improving the sorting ability significantly. Differential interfacial tension as it is implemented here demonstrates the effect of dissociation between cells of different type, but this is not sufficient to achieve sorting. The behaviour can be likened to a form of localized Brownian motion where more unsorted areas are prone to more movement events. Therefore, differential tension is not deemed suitable within the DLCM framework on its own. The cohesive effect of differential adhesion together with the dissociative effect of differential interfacial tension proved to work well together, acheiving a high degree of sorting both overall and compared to the case of only differential adhesion with some Brownian motion. Full separation into one distinct cell mass for each cell type present could not be achieved.
47

Editorial: Biomechanical Properties of Cells and Tissues and Their Impact on Cellular Adhesion and Motility

Mierke, Claudia Tanja 03 April 2023 (has links)
Editorial on the Research Topic. Biomechanical Properties of Cells and Tissues and Their Impact on Cellular Adhesion andMotility.
48

Mecanismos de ação de nanopartículas de prata no comportamento de propriedades mecânicas celulares / Mechanisms of action of silver nanoparticles in the behavior of cell mechanical properties

Sousa, Edi Carlos Pereira de 23 May 2018 (has links)
Neste trabalho estudamos a interação de dois tipos de nanopartículas de prata metálica, obtidas pelo processo de poliol (IQUSP) e pelo método eletrolítico (Khemia®), em células de músculo liso. Um extenso trabalho de caracterização foi realizado, descrevendo a natureza físico-química dessas nanopartículas. Medidas de absorção óptica mostraram que as nanopartículas exibem bandas suaves em torno de 400 nm, região do azul do espectro eletromagnético, devido à ressonância dos plasmons de superfície, evidenciando a tendência à agregação com o tempo. Microscopia eletrônica de transmissão foi realizada para obter as imagens das nanopartículas em micrografias. Histogramas foram construídos para determinar o tamanho das NPs e o índice de polidispersividade. Espectros de EDS foram obtidos para a caracterização química das amostras. Difratogramas de raios X foram obtidos para as AgNPs. Os picos de difração foram indexados e revelaram uma única fase cristalina da prata, com estrutura cúbica e estado de oxidação, Ag0. Com o auxílio desses difratogramas, foram calculados o parâmetro de rede e a distância interplanar dos planos de difração. Utilizando a equação de Scherrer e um ajuste gaussiano dos picos de Ag mostrados nos difratogramas de raios X, foi possível obter o tamanho do cristalito para nanopartículas IQUSP. Experimentos de DLS mostraram distribuição de número monomodal para AgNPs Khemia® e, para AgNPs IQUSP lavadas, distribuição bimodal, estimando-se a distribuição de número e tamanho. Os resultados mostraram que a distribuição dominante é sempre para raios menores, sugerindo partículas menores que se agregam com o tempo e formam maiores dimensões. Resultados de SAXS mostraram que as amostras fornecem boa intensidade de espalhamento. Utilizando modelos teóricos foram calculados o raio médio da distribuição, polidispersividade e raio de giro. Os dados revelaram que as nanopartículas IQUSP possuem um raio maior que as AgNPs Khemia® e não apresentaram agregação. Em contrapartida, AgNPs Khemia® apresentaram maior agregação, com polidispersividade relativa de 72%. Para AgNPs IQ--USP, análises de SAXS forneceram tamanho de partícula comparável a TEM e bastante diferente de DLS. As medidas de SAXS para AgNPs Khemia® mostram diferenças com as medidas de TEM e DLS. Ficou evidente o efeito da agregação, que tem influências desde o preparo das amostras até o tempo de realização das medidas. Testes de citotocixidade e estudos de análise morfológica por microscopia de fluorescência evidenciaram as características citotóxicas de cada nanopartícula. Os resultados apresentados pela análise morfológica realizada com microscopia de fluorescência concordam com os testes de citotoxicidade. AgNPs IQUSP mostraram alta toxicidade até a concentração 9.37 mg/mL, onde as células são apresentadas com fragmentação nuclear. Em concentrações mais baixas, as AgNPs IQUSP exibiram características morfológicas comparáveis ao grupo controle. Por sua vez, AgNPs Khemia® mostram alta toxicidade até a concentração 1.37 mg/mL, com índice IC50 variando na faixa de 1.3 a 6.7 mg/mL. Foi possível observar que concentrações mais altas induzem à fragmentação nuclear, desencadeando processos como apoptose e necrose. Experimentos utilizando a técnica de OMTC demonstraram que as diferentes concentrações de nanopartículas de prata podem modificar a rigidez celular. Isto é evidenciado quando comparamos o grupo controle com os demais grupos, com as diferentes concentrações de NPs. Para concentrações mais altas de nanopartículas, verificou-se um aumento da viscoelasticidade. Os dois tipos de nanopartículas estudadas apresentaram mudanças nas propriedades mecânicas, mas as AgNPs Khemia® apresentaram um maior aumento na viscoelasticidade nas diferentes concentrações de NPs. Essa mudança na viscoelasticidade foi explicada como sendo devido à maior disponibilidade do cálcio, liberado por células apoptóticas, o qual é utilizado no complexo miosina-actina para gerar contração muscular. / In this work we study the interaction of two types of metallic silver nanoparticles, obtained by the polyol process (IQUSP) and the electrolytic method (Khemia®), in smooth muscle cells. An extensive characterization work was carried out, describing the physico-chemical nature of these nanoparticles. Optical absorption measurements showed that nanoparticles exhibit smooth bands around 400 nm, the blue region of the electromagnetic spectrum, due to the resonance of the surface plasmons, evidencing the tendency to aggregate with time. Transmission electron microscopy was performed to obtain images of the nanoparticles in micrographs. Histograms were constructed to determine the size of NPs and the index of polydispersity. EDS spectra were obtained for the chemical characterization of the samples. X-ray diffraction patterns were obtained for the AgNPs. The diffraction peaks have been indexed and showed a single crystal layer of silver, with cubic structure and oxidation state, Ag0. By means of these diffractograms, the network parameter and the interplanar distance of the diffraction planes were calculated. Using the Scherrer equation and a Gaussian fit of the Ag peaks shown in the X-ray diffractograms, it was possible to obtain the crystallite size for IQ-USP nanoparticles. DLS experiments showed monomodal number distribution for Khemia® AgNPs and, for washed IQUSP AgNPs, bimodal distribution, estimating the number and size distribution. The results showed that the dominant distribution is always for smaller rays, suggesting smaller particles that aggregate with time and form larger dimensions. SAXS results showed that the samples provide good scattering intensity. Using the theoretical models, the average radius of the distribution, polydispersity and radius of gyration were calculated. The data revealed that the IQUSP nanoparticles have a larger radius than the Khemia® and did not show aggregation. In contrast, Khemia® AgNPs showed higher aggregation, with 72% relative polydispersity. For IQ-USP AgNPs, SAXS analyzes provided particle size comparable to TEM and quite different from DLS. SAXS measurements for Khemia® AgNPs show differences with TEM and DLS measurements. It was evident the effect of the aggregation that has influences from the sample preparation until the time of performing the measurements. Cytotoxicity tests and morphological analysis studies by fluorescence microscopy evidenced the cytotoxic characteristics of each nanoparticle. The results presented by the morphological analysis performed with fluorescence microscopy agree with the cytotoxicity tests. IQ-USP nanoparticles showed high toxicity up to the concentration of 9.37 mg/mL, where the cells are presented with nuclear fragmentation. At lower concentrations, the IQUSP AgNPs exhibited morphological characteristics comparable to the control group. In addition, Khemia® AgNPs show high toxicity up to the concentration of 1.37 mg/mL, with IC50 in the range of 1.3 to 6.7 mg/mL. It was possible to observe that higher concentrations induce nuclear fragmentation, triggering processes such as apoptosis and necrosis. Experiments using the OMTC technique demonstrated that different concentrations of silver nanoparticles can modify cell stiffness. This is evidenced when we compare the control group with the other groups, with the different concentrations of NPs. For higher concentrations of nanoparticles, there was an increase in viscoelasticity. The two types of nanoparticles studied showed changes in mechanical properties, but Khemia® AgNPs showed a greater increase in viscoelasticity at different concentrations. This change in viscoelasticity was explained to be due to the increased availability of calcium, released by apoptotic cells, which is used in the myosin-actin complex to generate muscle contraction.
49

Modélisation de la mécanique de la cellule et son noyau dans le cadre de la migration confinée / Modeling cellular and nuclear mechanics in the context of confined migration

Deveraux, Solenne 11 September 2018 (has links)
Les cellules possèdent une capacitéfondamentale à leur survie : la migration. Del’embryogénèse aux métastases tumorales, lorsde la migration, les cellules doivent se faufiler àtravers des mailles sub-nucléaires pour atteindreleur localisation cible. Pour ce faire, ellespeuvent adapter leur mode locomotion ou leurspropriétés mécaniques à l’environnement quiles entoure. La cellule ainsi que son noyausubissent d’importantes déformations lors de lamigration en milieu confiné. Le noyau étantl’organelle le plus gros et le plus rigide, il peutlimiter la capacité migratoire de la cellule. Sespropriétés mécaniques sont donc décisives afinde migrer à travers un environnement complexe.Dans la littérature, les signaux moléculairespendant le processus migratoire ont étéabondamment décrits, mais la modélisationmécanique d’une cellule en migration peut-ellenous révéler de nouveaux éléments sur lesmécanismes sous-jacents ?La migration cellulaire est un procédé d’unecomplexité mécano-biologique telle, que tous sesaspects ne peuvent être modélisés à ce jour. Nousen choisissons donc trois que nousdévelopperons ici. Nous nous intéressonsd’abord à l’interaction mécanique entre le noyauet le cytoplasme lors d’une constriction de lacellule, puisque la plasticité du noyau sembleavoir un rôle primordial. Nous étudions ensuitele chimneying, un mode migratoire sansadhésion dont le mécanisme repose sur desforces de friction couplées à la poroélasticité ducytoplasme. Enfin, les substrats avec des micropilierssont depuis peu utilisés pour étudier lespropriétés mécaniques de la cellule et de sonnoyau, mais la mécanique de ce phénomène estpeu comprise. Nous modélisons le processus parlequel le noyau se déforme afin de déterminer s’ilest poussé ou tiré dans l’espace inter-piliers. / One of the fundamental properties incells is their ability to migrate. Fromembryogenesis to tumor metastasis, migratingcells must overcome mechanical obstacles toreach their intended location, squeezing throughsub-cellular and sub-nuclear gaps. It can be doneby adapting the locomotion mode to thesurrounding environment or by tuning the cell’sown mechanical properties. Migrating in aconfined space leads to intensive deformation ofthe cell and thus its nucleus. Being the largestand stiffest organelle, the nucleus can hamperthe migratory process. Its mechanical propertieshence are key to a successful migration in acomplex environment. Molecular signals behindcell migration have been extensively studied inthe literature, but what can computationalmechanics modeling unveil about themechanisms behind cell migration?Cell migration is such a complex mechanobiologicalprocess, that all aspects cannot bemodeled at once for now. We choose threedistinct situations for in-depth study. We firstseek to understand the mechanical interplaybetween the nucleus and the cytoplasm, sincenuclear plasticity seems decisive for migrationthrough sub-nuclear gaps. Second, weinvestigate the mechanics of chimneying, aspecific confined migratory mode, in which noadhesion in needed for the cell to move forward.Poroelasticity, coupled with friction, appears asthe key to successful locomotion. Eventually,cell spreading on micro-pillared substrates hasrecently been developed to study nuclearmechanical properties. The mechanism behindthis process being however unclear, we designeda large deformation model to determine whetherthe nucleus is being pushed or pulled in theinter-pillars gaps.
50

Microscope opto-acoustique utilisant la technique d'acoustique picoseconde pour l'échographie cellulaire / An opto-acoustic microscope based on picosecond ultrasonics for single cell ultrasonography

Abi Ghanem, Maroun 06 October 2014 (has links)
L’adhésion et les propriétés mécaniques des cellules jouent un rôle crucial dans le fonctionnementcellulaire ainsi que dans l’apparition de maladies dégénératives. Pour mesurer ces quantités, nousavons développé dans ce travail un microscope opto-acoustique pour l’imagerie non-invasive de lamécanique de cellules individuelles avec une résolution sub-cellulaire. Ce microscope utilise latechnique d’acoustique picoseconde qui permet de générer et détecter optiquement des ondesacoustiques avec une large bande s’étendant jusqu’à 1 THz. Dans le but de reproduire lecomportement mécanique des cellules à des fréquences acoustiques supérieures à 10 GHz, uneétude sur des objets mous biomimétiques est menée dans une première partie. Les rigidité, viscositéet épaisseur de ces systèmes multicouches micrométriques sont caractérisées. Dans la deuxièmepartie de ce manuscrit, la technique d’acoustique picoseconde est employée pour imager le contactentre une cellule animale modèle et un biomatériau, ainsi que l’impédance acoustique de cette cellule.Un outil d’analyse nécessaire pour le traitement du signal acoustique est mis en place. Enfin, unmicroscope opto-acoustique opérationnel entre 10 et 100 GHz est présenté dans la dernière partie. Ilest basé sur un dispositif pompe-sonde asynchrone qui permet de produire des images acoustiquesen un temps court (4 pixels/min) avec une résolution axiale de l’ordre d’une dizaine de nm. Cetteapproche est comparable à une échographie mais à l’échelle cellulaire. L’étude de l’adhésion et despropriétés mécaniques de plusieurs types de cellules à différents stades de maturation est abordée.Des images topographiques des zones fines (< 50 nm) d’une cellule sont également analysées. Lemicroscope développé durant cette thèse offrira la possibilité d’explorer de nouvelles pistes derecherche dans les domaines de la biologie cellulaire et des biotechnologies. / Adhesion and mechanical properties of cells are key players in several cellular functions and areinvolved in the development of degenerative diseases. To characterize these quantities, we developedin this work an opto-acoustic microscope for the non-invasive imaging of the mechanics of individualcells with a sub-cell resolution. This microscope uses the Picosecond Ultrasonics (PU) technique thatallows optical generation and detection of acoustic waves with a large bandwidth up to 1 THz. In orderto reproduce the mechanical behaviour of cells at acoustic frequencies greater than 10 GHz, a studyof cell-mimicking micro-objects is first considered. The rigidity, viscosity and thickness of these microlayeredstructures are characterized. In the second part of this manuscript, the PU technique isapplied for imaging the contact between a simple animal cell and a biomaterial, as well as the acousticimpedance of this cell. An essential tool for analysing the acoustic signal is developed. In the thirdpart, the opto-acoustic microscope operating between 10 and 100 GHz is finally presented. It is basedon an asynchronous pump-probe setup that allows producing acoustic images within a short time (4pixels/min) and offering an axial resolution of about 10 nm. This is similar to cell ultrasonography. Thestudy of the adhesion and of the mechanical properties of different cell types at different stages of cellmaturation is then tackled. The topographic images of thin cell regions (< 50 nm) are also analysed.The microscope implemented during this thesis should offer the possibility of exploring new avenuesin the field of cellular biology.

Page generated in 0.0433 seconds