Spelling suggestions: "subject:"cellular immunology"" "subject:"cellular ummunology""
61 |
Polymer carriers of toll-like receptor-7/8 agonists as vaccine adjuvantsLynn, Geoffrey M. January 2014 (has links)
There is currently a need for vaccine adjuvants that are effective for eliciting Th1-type CD4 and CD8 T cell responses when formulated with protein and peptide-based subunit vaccines. Some of the most promising adjuvants in this regard are combined small molecule Toll-like receptor-7/8 agonists (TLR-7/8a). However, poor pharmacokinetic properties have precluded TLR-7/8a for use in vaccines. In this thesis, polymer carriers were used to control pharmacokinetics and to modulate activity of TLR-7/8a for use as vaccine adjuvants. Combinatorial synthesis and in vivo structure-activity studies were used to evaluate how properties of Polymer-TLR-7/8a conjugates (Poly-7/8a) influence innate immune activation in lymph nodes that drain the site of vaccine administration. The most striking finding was that particle formation by Poly-7/8a strongly enhances the magnitude and duration (>14 days) of innate immune activation in lymph nodes by restricting agonist biodistribution and promoting uptake by dendritic cells. Particle-forming Poly-7/8a optimized for activity were found to induce only local innate immune activation (not systemic) and were effective for eliciting Th1-type CD4 and CD8 T cells that mediated protection against infectious challenge. Based on the importance of particle formation for activity of Poly-7/8a, thermo-responsive Poly-7/8a were developed that exist as single water-soluble macromolecules in solution but undergo temperature-driven particle formation in vivo. In conclusion, polymer carriers of TLR-7/8a represent a versatile and effective platform for modulating innate immune activity and warrant further investigation as a class of adjuvants for vaccines.
|
62 |
Diabetes Mellitus at the Time for Diagnosis : Studies on Prognostic FactorsMartinell, Mats January 2017 (has links)
The aim for this thesis was to identify prognostic factors for chronic diabetes complications that exist at the time of diabetes diagnosis. Low level of education (<12 years) and low income (<60% of median) was found to increase the risk to have high (>70 mmol/mol) HbA1c at the time of diagnosis with 34 % and 35 %, respectively. Prevalence of diabetic retinopathy (DR) was 12% in a cohort of patients newly diagnosed with diabetes. Diabetic macular edema was present in 11% of patients with type 2 diabetes (T2D) and 13% of those with Latent Autoimmune Diabetes in Adults (LADA). Low beta cell function and low level of education increased the risk for DR with 110% and 43%, respectively. For every unit of increase in body mass index, the risk for DR was reduced by 3%. The cellular immunology of LADA patients was a mixture of that observed in both type 1 (T1D) and T2D patients. Compared to patients with T1D, LADA patients had more B-regulatory lymphocytes and antigen presenting cells capable of producing interleukine-35. This indicates a higher anti-inflammatory capacity in LADA patients compared to type T1D patients. By imputing age, body mass index, HbA1c at diagnosis, beta cell function and insulin resistance in a cluster analysis, five distinct diabetes clusters were identified. The four clusters representing T2D patients differed in incidence of DR, nephropathy and non-alcoholic fatty liver disease. This was replicated with similar results in three geographically separate populations. By studying socioeconomic background and factors present at the time of diagnosis we can better predict prognosis for chronic diabetes complications. These findings may facilitate better-targeted diabetes screening programs and more individually tailored treatment regimes.
|
63 |
PHARMACOLOGICAL TARGETING OF FGFR SIGNALING TO INHIBIT BREAST CANCER RECURRENCE AND METASTASISSaeed Salehin Akhand (8771426) 29 April 2020 (has links)
Breast cancer (BC) is one of the deadliest forms of cancers with high incidence and mortality rates, especially in women. Encouragingly, targeted therapies have improved the overall<br>survival and quality of life in patients with various subtypes of BC. Unfortunately, these first-line therapies often fail due to inherent as well as acquired resistance of cancer cells. Treatment evading cancer cells can exhibit systemic dormancy in patients over a long period of time without manifesting any symptoms. In a suitable environment, these undetected disseminated tumor cells can relapse in the form of metastasis. Therefore, it is essential to understand the mechanisms of<br><div>BC recurrence and to develop durable therapeutic interventions to improve patient’s survival. In this dissertation work, we studied fibroblast growth factor receptors (FGFR), as therapeutic targets to treat the recurrence of drug-resistant and immune-dormant BC metastasis. <br></div><div><br></div><div>The HER2 subtype of BC is characterized by the overexpression of human epidermal growth factor receptor 2 (HER2), which drives elevated downstream signaling promoting tumorigenesis. Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate in which an anti-HER2 antibody targets HER2 overexpressing tumor cells and delivers a highly potent microtubule inhibitor. Using novel models of minimal residual disease (MRD) following T-DM1 treatments, we found that epithelial to mesenchymal transition is a critical process for cells to persist the TDM1 treatments. The upregulation of FGFR1 may facilitate insensitivity to T-DM1. Our data also showed that FGFR1 overexpression in HER2+ tumors leads to a higher incidence of recurrence, and these recurrent tumors show sensitivity towards covalent inhibition of FGFR. <br></div><div><br></div><div>In addition to drug-induced MRD in the primary tumor sites, disseminated tumor cells (DTCs) can demonstrate dormant phenotype via maintaining an equilibrium with immunemediated tumor clearance. Factors affecting such equilibrium may contribute to the recurrence of breast cancers metastasis. We show that such immune-mediated dormancy can be modeled with the 4T07 tumors. These tumors display immune-exclusion phenotypes in metastatic pulmonary organs. The inhibition of FGFR modulates the immune cell compositions of pulmonary organs favoring anti-tumor immunity. However, inhibition of FGFR may also affect T cell receptor downstream signaling, resulting in the inhibition of cytolytic T cell’s function. Finally, we report that combination therapy using the FGFR kinase inhibitor and an immune checkpoint blockade showed effective targeting of metastatic 4T07 tumors. <br></div><div><br></div><div>FGFR signaling as a therapeutic target in various tumors has been an active focus of cancer research. In this dissertation work, we have expanded our understanding of the role of FGFR in the recurrence of drug-resistant breast cancers as well as in the maintenance of an immune evasive microenvironment promoting pulmonary growth of tumors. Moreover, we presented evidence that it is possible to repurpose FGFR targeted therapy alone or in combination with checkpoint blockades to target recurrent metastatic BCs. In the future, our novel models of minimal residual diseases and systemic immune dormancy may act as valuable biological tools to expand our understanding of the minimal residual disease and dormant tumor cells.</div>
|
64 |
Characterizing Microglial Response to Amyloid: From New Tools to New MoleculesPriya Prakash (10725291) 29 April 2021 (has links)
<p>Microglia are a population of specialized,
tissue-resident immune cells that make up around 10% of total cells in our
brain. They actively prune neuronal synapses, engulf cellular debris, and
misfolded protein aggregates such as the Alzheimer’s Disease (AD)-associated amyloid-beta
(Aβ) by the process of phagocytosis. During AD, microglia are unable to
phagocytose Aβ, perhaps due to the several disease-associated changes affecting
their normal function. Functional molecules such as lipids and metabolites also
influence microglial behavior but have primarily remained uncharacterized to
date. The overarching question of this work is, <i>How do microglia become
dysfunctional in chronic inflammation</i>? To this end, we developed new
chemical tools to better understand and investigate the microglial response to
Aβ <i>in vitro</i> and <i>in vivo</i>. Specifically, we introduce three new
tools. (1) Recombinant human Aβ was developed via a rapid, refined, and robust
method for expressing, purifying, and characterizing the protein. (2) A
pH-sensitive fluorophore conjugate of Aβ (called Aβ<sup>pH</sup>) was developed
to identify and separate Aβ-specific phagocytic and non-phagocytic glial cells <i>ex
vivo</i> and <i>in vivo</i>. (3) New lysosomal, mitochondrial, and nuclei-targeting
pH-activable fluorescent probes (called LysoShine, MitoShine, and NucShine,
respectively) to visualize subcellular organelles in live microglia. Next, we asked,
<i>What changes occur to the global lipid and metabolite profiles of microglia in
the presence of Aβ in vitro and in vivo</i>? We screened 1500 lipids comprising
10 lipid classes and 700 metabolites in microglia exposed to Aβ. We found significant
changes in specific lipid classes with acute and prolonged Aβ exposure. We also
identified a lipid-related protein that was differentially regulated due to Aβ <i>in
vivo</i>. This new lipid reprogramming mechanism “turned on” in the presence of
cellular stress was also present in microglia in the brains of the 5xFAD mouse
model, suggesting a generic response to inflammation and toxicity. It is well
known that activated microglia induce reactive astrocytes during inflammation. Therefore,
we asked, <i>What changes in proteins, lipids, and metabolites occur in astrocytes
due to their reactive state? </i>We provide a comprehensive characterization of
reactive astrocytes comprising 3660 proteins, 1500 lipids, and 700 metabolites.
These microglia and astrocytes datasets will be available to the scientific community
as a web application. We propose a final model wherein the molecules secreted
by reactive astrocytes may also induce lipid-related changes to the microglial
cell state in inflammation. In conclusion, this thesis highlights chemical
neuroimmunology as the new frontier of neuroscience propelled by the
development of new chemical tools and techniques to characterize glial cell
states and function in neurodegeneration.</p>
|
65 |
BIOENGINEERING OF HUMAN PLURIPOTENT STEM CELLS FOR CHIMERIC ANTIGEN RECEPTOR IMMUNOTHERAPYJackson Duke Harris (14232836) 07 December 2024 (has links)
<p> </p>
<p>Immunotherapy as a treatment for cancers that do not respond to surgery, chemotherapy, or radiotherapy is a powerful technique in which immune cells are modified to exert cytotoxic effects against a specified tissue. A classic technique in immunotherapy is the use of chimeric antigen receptor (CAR) expressing immune cells (typically T lymphocytes; referred to as CAR-T) to drive an immune response against cancerous tissue. The efficacy of CAR-T is reduced in solid tumors due to limitations of T lymphocytes as an effector cell in a tumor microenvironment. In this study we demonstrate that CAR-neutrophils differentiated from genetically-modified human pluripotent stem cells displayed a strong cytotoxic effect against prostate-specific membrane antigen expressing LNCaP cells as a model for prostate cancer <em>in vitro</em>. Additionally, we found that modification of the neutrophil differentiation scheme resulted in suspended, CD4+ cells, demonstrating potential to rapidly generate T lymphocytes under a feeder-free, xeno-free scheme <em>in vitro</em>. </p>
|
Page generated in 0.0402 seconds